Nuclear effects in UPCs and implications for EIC

Vadim Guzey

University of Jyväskylä & Helsinki Institute of Physics, University of Helsinki, Finland

Outline:

- Nuclear PDFs and nuclear shadowing
- Coherent J/ ψ photoproduction in Pb-Pb UPCs at LHC and gluon nuclear shadowing
- Inclusive dijet photoproduction in Pb-Pb UPCs at LHC and nuclear PDFs
- Summary and Outlook

Nuclear PDFs and nuclear shadowing

- Hard processes with nuclei → QCD factorization → nuclear parton distribution functions (nPDFs)
- Collinear nPDFs $f_{i/A}(x,Q^2)$ = probabilities of finding parton i=q,g with momentum fraction x at resolution scale Q
- 40+ years of experiments $\to f_{i/A}(x, Q^2) \neq Z f_{i/p}(x, Q^2) + (A Z) f_{i/p}(x, Q^2)$
 - nuclear shadowing (x < 0.05)
 - anti-shadowing ($x \approx 0.1$)
 - EMC effect (0.2 < x < 0.7)
 - Fermi motion (x > 0.7)
- Competing explanations of nuclear shadowing:
 - Gribov-Glauber model with proton diffractive PDFs (LTA), Frankfurt, Guzey, Strikman, Phys. Rept. 512 (2012) 255
 - nuclear enhancement of saturation scale in dipole model, Kowalski, Lappi, Venugopalan, PRL 100 (2008) 022303
 - nuclear enhancement of higher-twist (HT) corrections, Qiu, Vitev, PRL 93 (2004) 262301

Open questions:

- What are the mechanisms of nuclear shadowing?
- How can one distinguish them experimentally?
- What is the relation between shadowing and saturation?

Klasen, Paukkunen, Ann. Rev. Nucl. Part. Sci. 74 (2024) 49

Nuclear PDFs: from UPCs to EIC

- pA scattering at LHC \rightarrow incremental improvement in determination of $f_{i/A}(x,Q^2)$ using production of gauge bosons, jets, D^0 , EPPS21: Eskola et al., EPJC 82 (2022) 5, 413; nCTEQ15: Kusina et al., EPC 80 (2020) 10, 968; nNNPDF3.0: Abdul Khalek et al., EPJC 82 (2022) 6, 507
- *eA* scattering at planned EIC → dramatic progress due to
 - wide $x Q^2$ coverage
 - array of nuclei from D to Au
 - first measurements of longitudinal $F_L^A(x,Q^2)$ and diffractive $F_A^{D(3)}(x,x_P,Q^2)$ structure functions
- γA scattering through ultraperipheral collisions (UPCs) → complementary to EIC
 - Large impact parameters $b = \mathcal{O}(50 \, \text{fm}) \gg 2R_A$
 - Interaction via quasi-real photons in equivalent photon approximation
- Photon flux $N_{\gamma/A}(k) \sim Z^2$, photon energy $k \sim \gamma_L$
- LHC is a high-energy photon collider \rightarrow both $\gamma\gamma$ and $\gamma A (\gamma p)$ scattering
- J/ψ production in Pb-Pb UPCs \rightarrow access to very large photon-nucleon energy up to $W_{\gamma p} \approx 1 \, {\rm TeV}$ and very small $x_A = M_{J/\psi}^2/W_{\gamma p}^2 \approx 10^{-5} 10^{-2}$

Coherent J/ ψ production in Pb-Pb UPCs at LHC

- Most studied UPC process.
- Motivation \rightarrow nuclear gluon density at small x, Ryskin, Z. Phys. C57 (1993) 89
- Both ions can be a source of photons and a target \rightarrow sum of high and low photon-nucleon energies $W_{\nu\rho}^{\pm}$:

$$\frac{d\sigma^{PbPb\to PbPbJ/\psi}}{dy} = \left[N_{\gamma/A} \, \sigma^{\gamma Pb \to J/\psi Pb} \right]_{k=k^+} + \left[N_{\gamma/A} \, \sigma^{\gamma Pb \to J/\psi Pb} \right]_{k=k^-}$$

Photon flux from QED + $\Gamma_{AA}(b)$ to suppress strong interactions for $b < 2R_A$. Point-like (PL) approximation: Photoproduction cross section

$$y = \frac{E + p_z}{E - p_z} \to k^{\pm} = \frac{M_{J/\psi}}{2} e^{\pm y}$$

$$W_{\gamma p}^{\pm} = \left[\sqrt{s_{NN}} M_{J/\psi} e^{\pm y} \right]^{1/2}$$

$$N_{\gamma/A}^{\rm PL}(k) = \frac{2Z^2\alpha_{\rm em}}{\pi} \left[\zeta K_0 K_1 + \frac{\zeta^2}{2} \left(K_0^2 - K_1^2 \right) \right] K_{0,1} = K_{0,1} \left(\zeta = \frac{2R_A k}{\gamma_L} \right)$$

• Ambiguity in relating J/ ψ rapidity y to photon momentum $k \to \text{ambiguity}$ in momentum fraction $x_A = M_{J/\psi}^2/W_{\gamma p}^2 \to \text{difficult}$ to probe small x_A since $N_{\gamma/A}(k^+) \ll N_{\gamma/A}(k^-) \to \text{circumvented}$ by UPCs accompanied by forward neutrons from e.m. dissociation, Baltz, Klein, Nystrand, PRL 89 (2002) 012301, Guzey, Strikman, Zhalov, EPJC 74 (2014) 7, 2942

Coherent J/ ψ production in Pb-Pb UPCs at LHC (2)

• Nuclear photoproduction cross section in leading logarithmic approximation (LLA), Guzey, Kryshen, Strikman, Zhalov, PLB 726 (2013) 290; Guzey, Zhalov, JHEP 1310 (2013) 207

$$\sigma^{\gamma Pb \to J/\psi Pb}(W_{\gamma p}) = \frac{d\sigma^{\gamma p \to J/\psi p}(W_{\gamma p}, t = 0)}{dt} \begin{bmatrix} xg_A(x, Q_{\text{eff}}^2) \\ Axg_p(x, Q_{\text{eff}}^2) \end{bmatrix}^2 \int_{|t_{\text{min}}|}^{\infty} dt \, |F_A(t)|^2 \qquad x = \frac{M_{J/\psi}^2}{W_{\gamma p}^2} \\ Q_{\text{eff}}^2 = \mathcal{O}(m_c^2) = 3 \, \text{GeV}^2$$
 From HERA data From LTA and nPDFs Factorized t-dependence using nuclear form factor

• Comparison to LHC data at 5.02 TeV, [ALICE] EPJC 81 (2021) no.8, 712, PLB 798 (2019) 134926, JHEP 10 (2023) 119; [LHCb] JHEP 06 (2023)146; [CMS] PRL 131, no. 26 (2023) 262301; [ATLAS] 2509.04135 [hep-ex]

- Leading twist approximation (LTA)-based predictions made > 10 years ago describe the data for all y and $W_{\gamma p} > 100\,{\rm GeV} \rightarrow$ but note Run 3 ATLAS data.
- Good description using EPPS21, nCTEQ15, nNNPDF3.0 nPDFs with large nPDF uncertainties

Nuclear suppression factor

• Convert cross sections into nuclear suppression factor $S_{Pb}(x)$, Guzey, Kryshen, Strikman, Zhalov, PLB 726 (2013) 290; Guzey, Zhalov, JHEP 1310 (2013) 207

$$S_{Pb}(x) = \left[\frac{\sigma^{\gamma Pb \to J/\psi Pb}(W_{\gamma p})}{\sigma_{\text{IA}}^{\gamma Pb \to J/\psi Pb}(W_{\gamma p})}\right]^{1/2} = \frac{xg_A(x, Q_{\text{eff}}^2)}{Axg_p(x, Q_{\text{eff}}^2)}$$

Impulse approximation (IA):

$$\sigma_{\mathrm{IA}}^{\gamma Pb \to J/\psi Pb}(W_{\gamma p}) = \frac{d\sigma^{\gamma p \to J/\psi p}(W_{\gamma p}, t = 0)}{dt} \int_{|t_{\min}|}^{\infty} dt |F_A(t)|^2$$

- Avoids 2-fold ambiguity in photon energy
- Data-to-theory comparison with reduced theoretical uncertainties
- Independent on proton baseline

- Direct evidence of large gluon shadowing predicted by LTA: $R_g = g_A/(Ag_p) \approx 0.6$ at $x = 6 \times 10^{-4} 10^{-3}$, and further decreasing down to $x = 10^{-5}$.
- Reasonable agreement with modern nPDFs within large error bands, which predict flat $S_{Pb}(x)$ for $x < 10^{-3}$.

Nuclear shadowing vs. saturation

- Competing description based on color dipole model with gluon saturation, GG-HS: Cepila, Contreras, Krelina, PRC 97 (2018) 024901; b-BK-A: Bendova, Cepila, Contreras, Matas, PLB 817 (2021) 136306; Mãntysaari, Salazar, Schenke, PRD 106 (2022) no.7, 074019, PRD 109 (2024) no.7, L071504
- Status: no approach describes the data for all y, $W_{\gamma p}$, and x

• Principal difference between LTA and dipole model: diffractive vs. elastic intermediate states in calculation of nuclear shadowing, Frankfurt, Guzey, McDermott, Strikman, JHEP02 (2002) 027

Shadowing in LTA:

coupling to $N \geq 2$ nucleons through diffraction \rightarrow inclusion of $q\bar{q}$, $q\bar{q}g$ states

Shadowing in dipole model: successive eikonal scattering of $q\bar{q}$ dipole

• Can be distinguished by observables dominated by small-size dipoles $\to Q^2$ dependence of longitudinal structure function $F_L^A(x,Q^2)$ in eA DIS at EIC.

Spacial imaging of nuclear shadowing

• LTA predicts transverse-position b dependence of nPDFs = nuclear GPDs at $\xi = 0$

$$xf_{j/A}(x, Q_0^2, b) = A T_A(b) x f_{j/N}(x, Q_0^2) - 8\pi A(A - 1) B_{\text{diff}} \Re e \frac{(1 - i\eta)^2}{1 + \eta^2} \int_x^{0.1} dx_{\mathbb{P}} \beta f_j^{D(3)}(\beta, Q_0^2, x_{\mathbb{P}})$$

$$\times \int_{-\infty}^{\infty} dz_1 \int_{z_1}^{\infty} dz_2 \, \rho_A(\vec{b}, z_1) \rho_A(\vec{b}, z_2) \, e^{i(z_1 - z_2) x_{\mathbb{P}} m_N} e^{-\frac{A}{2}(1 - i\eta)\sigma_{\text{soft}}^j(x, Q_0^2) \int_{z_1}^{z_2} dz' \rho_A(\vec{b}, z')}$$

- Note that b-dependent nPDFs can also be extracted from data using global QCD fits, EPS09s, Helenius, Eskola, Honkanen, Salgado, JHEP 07 (2012) 073.
- Shadowing stronger at nucleus center \rightarrow broadening of nPDFs in b-space by $5-11~\% \rightarrow$ no t-factorization and shift of the diffractive dip of $d\sigma^{\gamma A \rightarrow J/\psi A}/dt$, Guzey, Strikman, Zhalov, PRC 95 (2017) 2,

025204 → confirmed by ALICE, Acharya et al., PLB 817 (2021) 1, 136280

- Similar effect by in color dipole model with saturation, Bendova, Cepila, Contreras, Matas, PLB 817 (2021) 136306; Mântysaari, Salazar, Schenke, PRD 106 (2022) 7, 074019
- At EIC: Shift of the diffractive dip of t-differential nuclear DVCS cross section with respect to BH and sharp dips in DVCS beam-spin asymmetry, Frankfurt, Guzey, Strikman, Phys. Rept. 512 (2012) 255

Exclusive J/ ψ photoproduction in NLO pQCD

- Beyond LLA, $\gamma A \rightarrow J/\psi A$ amplitude in terms of generalized parton distribution functions (GPDs), Ji, PRD 55 (1997) 7114; Radyushkin PRD 56 (1997) 5524; Diehl, Phys. Rept. 388 (2003) 41
- Next-to-leading order (NLO) of perturbative QCD, Ivanov, Schafer, Szymanowski, Krasnikov, EPJ C 34 (2004) 297, 75 (2015) 75 (Erratum); Jones, Martin, Ryskin, Teubner, J. Phys. G: Nucl. Part. Phys. 43 (2016) 035002

$$\mathcal{M}^{\gamma A \to J/\psi A}(t) \propto \sqrt{\langle O_1 \rangle_{J/\psi}} \int_{-1}^1 dx \left[T_g(x,\xi,m_c/\mu_f) F_A^g(x,\xi,t,\mu_f) + T_q(x,\xi,m_c/\mu_f) F_A^q(x,\xi,t,\mu_f) \right] \label{eq:mass_spectrum}$$

NRQCD matrix element from J/ψ leptonic decay

Coefficient function

Gluon GPD

Quark contribution

• Both gluons and gluons at NLO:

- At high $W_{\gamma p}$ and small skewness $\xi = \frac{M_{J/\psi}^2}{2W_{\gamma p}^2} \ll 1$
- → forward model for nuclear GPDs at input scale:

$$F_A^g(x,\xi,t,\mu_f) = xg_A(x,\mu_f)F_A(t)$$
 LTA or nPDFs Factorized t-dependence using nuclear form factor (Woods-Saxon)

• Forward model is accurate for small $\xi \to \text{all } \xi\text{-dependence}$ generated by Q^2 evolution of GPDs, Dutrieux, Winn, Bertone, PRD 107 (2023) 11, 114019

NLO pQCD for J/ ψ production in Pb-Pb UPCs@LHC

- Very strong factorization scale μ_f dependence due to $\ln(m_c^2/\mu_f^2)\ln(1/\xi)$ terms in NLO coefficient functions.
- "Optimal scale" $\mu_f=2.39~{\rm GeV}$ (EPPS21) giving fair description of Run 1-2 data, Eskola, Flett, Guzey, Löytäinen, Paukkunen, PRC 106 (2022) 3, 035202, PRC 107 (2023) 4, 044912
- Large uncertainties due to nPDF errors → opportunity to reduce them using UPC data.

- Large $\ln(1/\xi)$ can be resummed using high-energy factorization (HEF) \rightarrow reduced μ_f , μ_R dependence, Flett, Lansberg, Nabeebaccus, Nefedov, Sznajder, Wagner, PLB 859 (2024) 139117
- Sizable relativistic corrections to J/ψ wave function in dipole model, Frankfurt, Koepf, Strikman, PRD 57 (1998) 512; Lappi, Mäntysaari, Penttala, PRD 102 (2020) no.5, 054020 \rightarrow work in progress in collinear approach.

Inclusive dijet photoproduction in Pb-Pb UPCs@LHC

- Jets are complementary probes of nPDFs and QCD dynamics.
- First measurement of inclusive dijet production in Pb-Pb UPCs at 5.02 TeV for $0.002 < x_A < 0.5$ and 35 < Q < 212.5 GeV, [ATLAS], PRD 111 (2025) no.5, 052006

• Collinear factorization of pQCD, Guzey, Klasen, PRC 99 (2019) 065202

- $\begin{array}{c} -X = \sum_{a,b} \int dy \int dx_{\gamma} \int dx_{A} \, f_{\gamma/A}(y) f_{a/\gamma}(x_{\gamma},Q^{2}) f_{b/A}(x_{A},Q^{2}) \, d\hat{\sigma}^{ab \to \text{jets}} \\ \text{Photon flux} & \text{Photon PDFs for resolved photon} & \text{nPDFs} & \text{Hard parton cross section} \\ \end{array}$
 - NLO pQCD describes shape and normalization of preliminary ATLAS data, ATLAS-CONF-2017-011
 - 10-20% effect of nPDFs \rightarrow the data can be used to reduce uncertainty of gluon density by factor 2 at $x_A = 10^{-3}$, Guzey, Klasen, EPJ C 79 (2019) 5, 396
 - Data can also be used to look for nonlinear effects in Color Glass Condensate framework, Kotko, Kutak, Sapeta, Stasto, Strikman, EPJ C 77 (2017) 5, 353

Transverse-plane geometry in dijet photoproduction

- ATLAS measurement in 0nXn neutron class \rightarrow smaller impact parameters $b < \langle b \rangle$
- Sensitivity to the transverse-plane distributions of charge in photon-emitting nucleus $(f_{\gamma/A}(y, \vec{r}))$ and of partons in the nuclear target $(T_A(\vec{s}))$
- Additional factor $\Gamma_{AA}^{\text{e.m.}}$ to veto the electromagnetic breakup of the photon-emitting nucleus.
- Effective photon flux, Eskola, Guzey, Helenius, Paakkinen, Paukkunen, PRC 110 (2024) 5, 054906

- Transverse-plane geometry effects important for large y and k (left) and large $z_{\gamma} = yx_{\gamma}$ (right) \rightarrow correspond to small impact parameters $b < \langle b \rangle$.
- Sensitivity to b-dependence of nPDFs is small.

Summary and Outlook

- Continuing interest and strong theoretical support of UPCs at LHC and RHIC to obtain new constraints on nPDFs and QCD dynamics at small $x \to \frac{\text{UPC2025 workshop}}{\text{VPC2025 workshop}}$
- Complementary to pA at LHC and eA at EIC: large $W_{\gamma p}$ in UPCs vs. Q^2 and nuclear mass A dependence at EIC.
- The data on coherent J/ ψ production in Pb-Pb UPC at LHC challenges both collinear factorization and saturation frameworks.
- Strong nuclear suppression observed in this process \rightarrow large leading-twist gluon nuclear shadowing at small x in collinear framework.
- Inclusive dijet production in Pb-Pb UPC at LHC probes nPDFs down to $x_A = 10^{-3}$ and can reduce the current uncertainties of the gluon distribution by factor of 2.
- Many ongoing studies of various heavy-ion UPC processes:
 - Coherent production of light vector mesons $(\rho, \omega, \phi) \rightarrow$ test of soft models of shadowing, Guzey, Kryshen, Zhalov, PRC 93 (2016) 5, 055206
 - Inclusive *D*⁰ production → test of nPDFs, Cacchiari, Innocenti, Stasto, 2506.09893 [hep-ph], saturation, Gimeno-Estivill, Lappi, Mäntysaari, PRD 111 (2025) no.11, 114036, and uPDFs, Goncalves, Santana, Schäfer, 2506.02223 [hep-ph]
 - Incoherent J/ ψ production \rightarrow test of LTA, Guzey, Strikman, Zhalov, PRC 99 (2019) 1, 015201, hot spot model, Mäntysaari, Schenke, PLB 772 (2017) 832; Mäntysaari, Salazar, Schenke, PRD 109 (2024) 47, L071504