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QCD at small xBj ∼ Q2/s

Regge limit: Q2 ≪ s
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Rapidity separation

[McLerran, Venugopalan, 1994] [Balitsky, 1995]

∼ p+n1

∼ p−n2

k+ < e−Y p+

k+ > e−Y p+

Let us split the gluonic field between ”fast” and ”slow” gluons

Aµa(k+, k−, k) = aµa (|k+| > e−Y p+, k−, k)

+ Aµa
cl (|k

+| < e−Y p+, k−, k)
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Large longitudinal boost to the projectile frame

∼ p+n1

∼ p−n2

∼ p+n1

∼ p−n2

A+
cl(x

+, x−, x)
1

Λ
A+

cl(Λx
+,
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Λ
, x)

A−
cl(x

+, x−, x) −→ ΛA−
cl(Λx

+,
x−

Λ
, x)

Ai
cl(x

+, x−, x) Λ ∼
√

s

m2
t

Ai
cl(Λx

+,
x−

Λ
, x)

Aµ
cl(x) → A−

cl(x) n
µ
2 = δ(x+)A(x) nµ

2 + O(

√
m2

t

s
)

Shock wave approximation
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Effective Feynman rules in the slow background field

The interactions with the background field can be exponentiated

∆x+ ∼ 0 ∆x+ ∼ 0∆x+ ∼ 0

DF (x2, x0)|x+2 >0,x+0 <0 =

∫
dDx1 δ(x

+
1 )D0(x2, x1) γ

+Ux1D0(x1, x0)

Each fast parton is dressed by an infinite Wilson line

Ux ≡ P exp

[
ig

∫ +∞

−∞
dx · Acl(x)

]

Top-down approach to improving BK Bjorken and Regge limits Synergies 5



Bjorken and Regge limits Continuity Interpolation Towards stable BK How to fix BK Conclusion

Factorized picture

〈P | |P ′〉

z1

z2

Factorized amplitude

S =

∫
dx1dx2 Φ

Y (x1, x2 ) ⟨P ′|[Tr(UY
x1
UY †

x2
)− Nc ]|P⟩

Written similarly for any number of Wilson lines in any color representation!

Y independence: B-JIMWLK, BK equations. Resums logarithms of s
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The seemingly incompatible nature of the distributions

Two different kinds of gluon distributions

Moderate x distributions

TMD, PDF...

⟨P |F−iWF−jW |P⟩

Low x distributions

Dipole scattering amplitude

⟨P |tr(U1U
†
2)|P⟩
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The Wilson line ↔ parton distribution equivalence

Most general equivalence: use the Non-Abelian Stokes theorem

[RB, Mehtar-Tani]

ξ +∞

x1

x2

ξ +∞

z2

tn

z1

t2

t1

zn

C

S

→
F i−(tn, zn)

P exp

[∮
C
dxµA

µ(x)

]
= P exp

[∫
S
dσµν WFµνW †

]

Ux1⊥U†
x2⊥ = [x̂1⊥, x̂2⊥]
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Inclusive low x cross section

Non-exclusive low x cross section = TMD cross section
[Altinoluk, RB, Kotko], [Altinoluk, RB]

Generalizes [Dominguez, Marquet, Xiao, Yuan]

k k

b b′

k1 k2 k

b1

b2

b′

k1 k2 k′
2k′

1

b1

b2

b′
1

b′
2

σ = Hij
2 (k) ⊗ f ij2 (x = 0, k)

+Hijk
3 (k , k1) ⊗ f ijk3 (x = 0, x1 = 0, k , k1)

+Hijkl
4

(
k , k1, k

′
1

)
⊗ f ijkl4 (x = 0, x1 = 0, x ′

1 = 0, k , k1, k
′
1)

All distributions are evaluated in the strict x = 0 limit
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All distributions are evaluated in the strict x = 0 limit

[NNLO NNPDF3.0 global analysis, taken from PDG2018]

Instabilities in the collinear corner of the phase space
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The double log limit

Collinear logs are a problem for small-xBj physics

Proposed ad hoc solutions to the symptoms:
Imposed kinematic orderings on − momenta or light cone times
[Beuf], extends [Ciafaloni, Colferai, Salam, Stasto...]

Resummation of logarithms
[Iancu, Madrigal, Mueller, Soyez, Triantafyllopoulos], [Liu, Kang, Liu]
[Caucal, Salazar, Schenke, Venugopalan], [Taels, Altinoluk, Beuf, Marquet]

Non-local factorization
[Iancu, Mueller, Triantafyllopoulos]

Better choice of evolution variable
[Ducloué, Iancu, Mueller, Soyez, Triantafyllopoulos]

All these schemes mimic a dependence on x in hopes of
postponing the issue with the collinear limit.
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All distributions are evaluated in the strict x = 0 limit

Hard part H and gluon distribution f for an inclusive
observable:

Bjorken limit

s ∼ Q2∫
dxf (x)H(x)

Leading twist of the CGC

s ≫ Q2,Q2 → ∞

f (0)
∫
dxH(x)

Too late to restore a dependence on x via evolution: x is
already integrated over
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Summary so far

Distributions involved in pQCD observables

Overarching scheme?

f (x1...xn; k⊥1...k⊥n)

Bjorken limit

s ∼ Q2

f (x ; 0⊥) + O(Q−2)

Regge limit

s ≫ Q2

f (0...0, k⊥1...k⊥n) + O(xBj)

Look for an interpolating scheme for simple observables
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An interpolating scheme for collinearly factorizable
observables: DIS, DVCS, TCS, DDVCS

q q

p p

[RB, Mehtar-Tani]
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Bjorken limit

s ∼ Q2

f (x , k⊥ = 0) + O(Q−2)

Regge limit

s ≫ Q2

f (x = 0, k⊥) + O(xBj)

Interpolation?

s ≳ Q2

f (x , k⊥) + O(xBjQ
−2)

Basic observation: in both limits, k+ ≃ 0 for t-channel gluons

Factorization in k+ space is consistent
[Balitsky, Tarasov]
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Building a semi-classical picture

Still factorizing gluons depending on k+ in A+ = 0 gauge

Necessary gluon fields in the Regge limit:

Aµ(x) = A−(x+, 0−, x)nµ2

Necessary gluon fields in the Bjorken limit?

Aµ(x) = A−(x+, x−, x) nµ2 + Aµ
⊥(x

+, x−, x)
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Building a semi-classical picture

Still factorizing gluons depending on k+ in A+ = 0 gauge

Necessary gluon fields in the Regge limit:

Aµ(x) = A−(x+, 0−, x)nµ2

Necessary gluon fields in the Bjorken limit?

Aµ(x) = A−(x+, x−, x) nµ2 + Aµ
⊥(x

+, x−, x)

Dependence on x−: sub-sub-leading in twist counting
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Building a semi-classical picture

Still factorizing gluons depending on k+ in A+ = 0 gauge

Necessary gluon fields in the Regge limit:

Aµ(x) = A−(x+, 0−, x)nµ2

Necessary gluon fields in the Bjorken limit?

Aµ(x) = A−(x+, 0−, x) nµ2 + Aµ
⊥(x

+, 0−, x)

Non-zero A⊥: only two Ai contribute to DDVCS

They can be computed using Ward-Takahashi: only necessary
for consistency checks, can be dropped.
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Building a semi-classical picture

Still factorizing gluons depending on k+ in A+ = 0 gauge

Necessary gluon fields in the Regge limit:

Aµ(x) = A−(x+, 0−, x)nµ2

Necessary gluon fields in the Bjorken limit:

Aµ(x) = A−(x+, 0−, x) nµ2

.
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Effective Feynman rules in the slow background field

Effective fermion propagator in the external classical field

∆x+ 6= 0 ∆x+ 6= 0 ∆x+ 6= 0

Ai
cl = 0, A+

cl = 0: the Dirac structure factorizes

Acl does not depend on x−: conservation of + momentum

DF (ℓ
′, ℓ) = i

γ+

2ℓ+
(2π)DδD(ℓ′ − ℓ) + i

/ℓ
′
γ+/ℓ

2ℓ+
Gscal(ℓ

′, ℓ)
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Effective Feynman rules in the slow background field

Effective scalar propagator in the external classical field

=

�

+

k

2 g k+A−(x)

�′�

. . .

G

�′�

. . .

G

G scal(ℓ
′, ℓ)− G0(ℓ

′)(2π)DδD(ℓ′ − ℓ)

= 2g

∫
dDz

∫
dDk

(2π)D
ei(ℓ

′−k)·zG0(ℓ
′) (k · A)(z)G scal(k, ℓ).

In coordinate space, it satisfies the Klein-Gordon equation in a potential

[−□z + 2igA(z) · ∂z ]G scal(z , z0) = δD(z − z0)
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Application to the γ(∗)(q)P(p) → γ(∗)(q′)P(p′)
amplitude

q q′

p p′

Top-down approach to improving BK Interpolation Synergies 22
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Computing the γ(∗)(q)P(p) → γ(∗)(q′)P(p′) amplitude

q q′

p p′

A =
e2

µd−2 ε
µ
qε

ν∗
q′

∑
f

q2f

∫
dDℓ

(2π)D

∫
dDk

(2π)D

× ⟨p′|tr
[
γνDF (k , ℓ)γµDF (−q + ℓ,−q′ + ℓ+ k)

]
|p⟩
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Final result for DDVCS

Final expression for the DDVCS amplitude

A = g2
∑
f

q2f

∫ 1

0

dz

2π

∫
ddℓ

(2π)d

∫
ddk

× (∂iΦ)(z , ℓ− k/2)(∂jΦ∗)(z , ℓ+ k/2)

×
∫

dx
G ij(x , ξ, k ,∆)

x − xBj − ℓ2

2zz̄q+P− + i0

Standard wave functions Φ

x-dependent unintegrated GPD operator G ij(x , ξ, k ,∆) (includes
polarized terms)
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Final result

Final expression for the DIS amplitude

A = −iπg2
∑
f

q2f

∫ 1

0

dz

2π

∫
ddℓ

(2π)d

∫
ddk

× (∂ iΦ)(z , ℓ− k/2)(∂jΦ∗)(z , ℓ+ k/2)

×
∫

dx G ij(x , k)δ

(
x − xBj −

ℓ2

2zz̄q+P−

)
Standard wave functions Φ

x-dependent unintegrated PDF operator G ij(x , k)
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The unintegrated PDF

uGPD as a finite Wilson loop

∫
d2

kei(k·r)r i r jG ij(x , ξ, k ,∆)

=
1

αs

∫
d4v1d

4v2
(2π)4

δ(v−
1 )δ(v−

2 )e−i(k−∆
2
)·v1+i(k+∆

2
)·v2

× ∂

∂v+
1

∂

∂v+
2

⟨p′|tr[v+
1 , v+

2 ]v1 [v 1, v 2]v+2
[v+

2 , v+
1 ]v2 [v 2, v 1]v+1

|p⟩
⟨p|p⟩

∂
∂x+

∂
∂x+

k k

x-dependent unintegrated GPD ⇔ FT of a finite Wilson loop
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Summary

Interpolating scheme for exclusive Compton scattering

Overarching scheme∫
dx

∫
ddkG ij(x , ξ, k ,∆)H ij(x , ξ, k ,∆)

Bjorken limit∫
dxH ij(x , ξ, 0,∆)

×[
∫
ddkG ij(x , ξ, k ,∆)]

Regge limit∫
ddkG ij(0, ξ, k ,∆)

×[
∫
dxH ij(x , ξ, k ,∆)]

We found an interpolating scheme
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Summary

Interpolating scheme for exclusive Compton scattering

Overarching scheme∫
dx

∫
ddkG ij(x , ξ, k ,∆)H ij(x , ξ, k ,∆)

Bjorken limit∫
dxH ij(x , ξ, 0,∆)

×[
∫
ddkG ij(x , ξ, k ,∆)]

Regge limit∫
ddkG ij(0, ξ, k ,∆)

×[
∫
dxH ij(x , ξ, k ,∆)]

We found an interpolating scheme
Can we find an interpolating evolution equation?
Does it correct the collinear structure of BK?
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Deriving the evolution equation

Evolution equation for the x-dependent dipole
operator

S (2)(x , x1, x2) ≡
1

Nc

∫
dz+1

∫ z+1

−∞
dz+2 eixP

−z+12
∂2

∂z+1 ∂z
+
2

tr[z+1 , z
+
2 ]x1 [z

+
2 , z

+
1 ]x2

z+1z+2

x2

x1
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Deriving the evolution equation

Quantum corrections

Aµ = Aµ
cl + aµ

z+1z+3z+4z+2

z+1z+3z+4z+2 z+1z+4z+3z+2

Every line is dressed with classical gluon fields
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Deriving the evolution equation

Operator algebra: each diagram can be decomposed

z+1z+3z+4z+2
z+5z+6

z+2z+3z+4z+1
z+5z+6

z+2z+3z+4z+1
z+5z+6

z+1z+3z+4z+2
z+5z+6

z+2z+3z+4z+1
z+5z+6

z+2z+3z+4z+1
z+5z+6

Only lines inside grey blobs are dressed with classical gluon fields

The second line is power suppressed in the Regge limit
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Deriving the evolution equation

Result, up to subeikonal terms

∆S (2)(x , x1, x2)

= −2αs

Nc

∫
dk+

k+
θ(k+)

∫
dd

k1

(2π)d
dd

k2

(2π)d

∫
dd

x3

×
(k1 · k2)

(
ei(k1·x13) − ei(k1·x23)

)(
e−i(k2·x13) − e−i(k2·x23)

)
(k2

1 − 2xP−k+ − i0)(k2
2 − 2xP−k+ − i0)

×
∫

dz+1

∫ z+1

−∞
dz+2 e

i

(
xP−−

k
2
1−i0

2k+

)
z+12

× ∂z+1
∂z+2

{
tr[z+1 , z

+
2 ]x1 [z

+
2 , z

+
1 ]x3tr[z

+
1 , z

+
2 ]x3 [z

+
2 , z

+
1 ]x2 − Nctr[z

+
1 , z

+
2 ]x1 [z

+
2 , z

+
1 ]x2

}
x-dependent BK kernel, x-dependent double dipole
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Deriving the evolution equation

Result, at x = 0

∆S (2)(x = 0, x1, x2)

= −2αs

Nc

∫
dk+

k+
θ(k+)

∫
dd

k1

(2π)d
dd

k2

(2π)d

∫
dd

x3

×
(k1 · k2)

(
ei(k1·x13) − ei(k1·x23)

)(
e−i(k2·x13) − e−i(k2·x23)

)
k
2
1k

2
2

×
∫

dz+1

∫ z+1

−∞
dz+2 e

−i
k
2
1−i0

2k+
z+12

× ∂z+1
∂z+2

{
tr[z+1 , z

+
2 ]x1 [z

+
2 , z

+
1 ]x3tr[z

+
1 , z

+
2 ]x3 [z

+
2 , z

+
1 ]x2 − Nctr[z

+
1 , z

+
2 ]x1 [z

+
2 , z

+
1 ]x2

}
Non-zero phase: not BK!

Top-down approach to improving BK Towards stable BK Synergies 33



Bjorken and Regge limits Continuity Interpolation Towards stable BK How to fix BK Conclusion

Deriving the evolution equation

Result, at x = 0

Standard BK:∫
dk+

k+
θ(k+) e−i

k
2
1−i0

2k+
z+12 →

∫ ρ+0 +δρ+0

ρ+0

dk+

k+
θ(k+) = δ ln ρ+0

Here:∫
dk+

k+
θ(k+) e−i

k
2
1−i0

2k+
z+12 → (ρ+)η

∫
dk+

(k+)1+η
e−i

k
2
1−i0

2k+
z+12 θ(k+)

Then,

∆S (2)(x = 0, x1, x2) = ∆S
(2)
BK(x = 0, x1, x2)

− ln
k
2
1

2ρ+0 P
− ⊗ S (3)(x = 0) + const.
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Evolution equation

Result, at x = 0

∆S12 − ᾱsKBK ⊗ S12

= −ᾱs

∫
3

x
2
12

x2
13x

2
32

(
ln

|x13||x32|µ
|x12|

+ ln |x12|µ+
x
2
23 − x

2
13

x2
12

ln
|x13|
|x32|

)
(S13S32 − S12)

where µ2 = 2ρ+0 P
−

Balitsky and Chirilli’s conformal dipole evolution, and an extra term
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Evolution equation

Result, at x = 0

∆S12 − ᾱsKBK ⊗ S12

= −ᾱs

∫
3

x
2
12

x2
13x

2
32

(
ln

|x13||x32|µ
|x12|

+ ln |x12|µ+
x
2
23 − x

2
13

x2
12

ln
|x13|
|x32|

)
(S13S32 − S12)

where µ2 = 2ρ+0 P
−

Conformal dipole term: cancels double logs, but generates
instabilities

Extra term: compensates those instabilities
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How to fix BK: generalities
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Fixing BK by a change of variables

Let us introduce a vector S of Wilson line operators in the Balitsky hierarchy:
S (2)=dipole, S (3)=double dipole... and the BK operator so that for
ζ = 2ρ+P−, the BK hierarchy of equation reads

∂S(ζ)

∂ζ
= ᾱsK · S(ζ)

Let us introduce a new scale µ2 and the composite vector S̄ as

S̄(ζ, µ2) = e−ᾱsL(µ
2)S(ζ)

Then S̄ evolves as
∂S̄(ζ, µ2)

∂ζ
= ᾱsK̄ · S̄(ζ, µ2)

with
K̄(µ2) = e−ᾱsL(µ

2)KeᾱsL(µ
2)

Top-down approach to improving BK How to fix BK Synergies 38
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Fixing BK by a change of variables

L(µ2) is arbitrary: we can build it so that ([Balitsky, Chirilli]: factor 1/2)

∂S̄(ζ, µ2)

∂ lnµ2
= −∂S̄(ζ, µ2)

∂ζ

Then
∂K̄(ζ, µ2)

∂ lnµ2
= 0

and S̄(ζ, µ2) = S̄(ζ/µ2).

For L(µ2) polynomial in lnµ2 of degree < number of loops, we find at NNLL:

LLL = L10 + KLL lnµ2

LNLL = L20 +

{
KNLL +

1

2
[KLL, L10]

}
lnµ2

LNNLL = KNNLL +

{
KNNLL +

1

2
[KLL, L20] +

1

2
[KNLL, L10] +

1

12
[[KLL, L10], L10]

}
lnµ2

+
1

12
[KLL, [KLL, L10]] ln

2 µ2

Top-down approach to improving BK How to fix BK Synergies 39



Bjorken and Regge limits Continuity Interpolation Towards stable BK How to fix BK Conclusion

Fixing BK by a change of variables

Modified kernel:

K̄NNLL = KNNLL+ᾱs [KLL, L10]+ᾱ2
s [KNLL,L10]+ᾱ2

s [KLL, L20]+
ᾱ2
s

2
[[KLL, L10], L10]

Educated choice for the L(µ2) constant terms L10, L20: convolution of the BK
kernel with transverse logs of daughter dipole sizes

Ln0 · S = (K ⊗ ln r̂
2) · S ⇒ L(µ2) = KLL ⊗ ln(µ2

r̂
2) + ...

Commutators: Logarithms of ratios of daughter dipole sizes to parent
dipole sizes.

Good choices of transverse logs cancel double logs
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Fixing BK by a change of variables

Summary: change of variables

We can define a composite dipole S̄ which:

Evolves with rapidity Y = ζ/µ2 → 1/xBj instead of projectile
momentum

Evolves with a collinearly stable evolution equation

Is still compatible with impact factors computed with
regularization in k+

Correction to standard impact factors, for cross section
independence on the choice of L:

H̄ = H eᾱs
←−
L (µ2)
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Conclusion

Summary of our findings

Bad news

Semi-classical small x physics has, at its core, issues with
collinear logarithms

The problem can be traced down to the very starting point

Good news

We now have a minimal correction of semi-classical small
x which solves the problem from first principles

Known impact factors are compatible with our scheme
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