

Development and performance of the dRICH SiPM-based photodetector for the ePIC experiment at the EIC

Riccardo Ricci¹

¹INFN Bologna

On behalf of the ePIC-dRICH collaboration 22/09/2025

The Electron-Ion Collider

Next generation electron-proton and electron-ion collider machine planned at Brookhaven National Laboratory BNL (USA):

- Operations will start in early 2030's
- Designed to probe the secrets of the strong force

Key Features and goals

- First collider providing:
 - Polarized electron-proton (and light ion) beams
 - electron-nucleus collisions
- Precision tests of Quantum Chromodynamics (QCD):
 - Origin of nucleon mass & spin from quarks and gluons
 - 3D mapping of nucleon and nuclear structure
 - Deeper understanding of quark-gluon confinement into hadrons

The ePIC experiment

Physics requirements for PID:

- pion, kaon and proton ID
- cover a wide range in pseudo-rapidity, $|\eta| \le 3.5$
- with better than 3σ separation
- significant pion/electron suppression

Hadronic Calorimeters

Particle Identification

Solenoid Magnet

Tracking

Electromagnetic Calorimeters

8.5 m

The ePIC experiment

Physics requirements for PID:

- pion, kaon and proton ID
- cover a wide range in pseudo-rapidity, $|\eta| \le 3.5$
- with better than 3σ separation
- significant pion/electron suppression
- particle ID
 - **AC-LGAD TOF**
 - pfRICH
 - hpDIRC
 - dRICH

hadrons -

8.5 m

5.5 m

The ePIC dRICH

The ePIC dual-radiator (dRICH) will perform forward PID at the EIC

two radiators: aerogel (n ~ 1.02) and C_2F_6 (n ~ 1.0008)

mirrors: large outward-reflecting, 6 open sectors **sensors:** 3x3 mm² pixel, ~ 3 m² of photodetectors

single-photon detection inside high B field (~ 1 T)

outside of acceptance, reduced constraints

optical readout: SiPM

p = [3.0, 50] GeV/c $\eta = [1.5, 3.5]$ e-ID up to 15 GeV/c

spherical mirrors

Detector integration and electronics

Photodetector unit (PDU) - conceptual design

SiPM sensor matrices mounted on carrier PCB board

- 4x 64-channel SiPM array device (256 channels) for each unit
 - o need modularity to realise curved readout surface
- 1248 photodetector units for full dRICH readout
 - 4992 SiPM matrix arrays (8x8)

SiPM for the dRICH optical readout

Silicon Photomultiplier (SiPM) tecnology:

- Cheap
- High Photon Detection Efficiency (PDE)
- Excellent time resolution
- Insensitive to Magnetic field
- baseline device: 64 (8x8 channel SiPM array)
- Large dark count rates
- Low radiation tolerance

Solutions and mitigation strategies: Cooling, Timing & annealing

Example device that fulfills requirements (Hamamatsu TSV S13361 - 3050/75NE-08)

SiPM - studies of radiation damage

- current increases linearly with fluence
- point is the average over several channels
- rectangle represents RMS dispersion

- **Proton irradiation** campaigns (2021, 2022, 2023 and 2024)
- **Neutron irradiation in** 2023 and 2024

3x3 mm² SiPM sensors 4x8 "matrix" (carrier board)

SiPM - high temperature annealing recovery

- 100x current reduction
- sensor works as if it received ~ 100x less fluence

Repeated irradiation-annealing cycles

Goal: Test reproducibility of repeated irradiation-annealing cycles to simulate a realistic experiment situation

- consistent irradiation damage
 - DCR increases by ~ 500 kHz (@ Vover = 4)
 - after each shot of 10⁹ n_{eq}
- consistent residual damage
 - \sim **15 kHz** (@ V_{over} = 4) of residual DCR
 - builds up after each irradiation-annealing

recovering about ~97% in terms of in DCR

SiPM - self induced annealing

- detailed studies on a large sample of sensors how much damage is cured as a function of temperature and time
- fraction of residual damage seems to saturate
- at 2-3% after ~ 300 hours at T = 150 C continuing at higher T = 175 C seems not to help curing more

Detailed study on self induced annealing

After many hours of online annealing → noticed alterations on the SiPM windows in particular in one board that underwent 500 hours of online annealing at T = 175 C → the sensors appear "yellowish" when compared to new

ePI ePIC dRICH prototype

PDU prototype

4x SiPM matrix arrays

(256 channels)

Front-end electronics (ALCOR ASIC inside)

2024 dRICH prototype:

- 20x20x20 cm³
- 8 Photon Detection Units (PDU)
- Each PDU fully equipped with 4 matrix arrays of 64 SiPMs.
- 256 channels for each PDU.
- **2048** Hamamatsu S13361 SiPMs, ≈ 400 cm² optical surface (1/10 of a dRICH sector)
- 2 different SPAD sizes (50 and 75 um)
- 2 mm dead layer between PDUs
- **64 ALCOR** v2 ASICS
- 2048 TDC channels electronics
- Automatically controlled temp down to -40 °C
- 10 °C water cooling

epit ePIC dRICH prototype

PDU prototype

4x SiPM matrix arrays

(256 channels)

Front-end electronics (ALCOR ASIC inside)

75 µm

Beam test setup

Beam test at CERN PS T10

Beam test at CERN PS T10

Beam test results

Dual radiator (both aerogel and C₂F₆)

32 channels not available due to readout issues with one ASIC

Comparison between different SiPM sensors

15% increase in number of detected photons wrt to 25% increase in PDE

Number of photoelectrons

2D fit to accumulated data with realistic model (ring + background)

event-by-event distribution of hits in the ring

Poisson fit to data, average number of hits is large

Beam test results - CERN PS 2024

positive particles, aerogel only

reconstructed ring radius at 8 GeV/c beam momentum

Beam test results - CERN PS 2024

Gas ring tags only π , at 10 GeV/c K and p are **below** the C2F6 gas threshold.

reconstructed ring radius at 10 GeV/c with gas veto

gas-ring veto removes pions, clean kaon identification at 10 GeV/c

Summary and conclusions

- The SiPM technology has been chosen for the ePIC-dRICH experiment at the EIC
- R&D activities to study and perfectionate radiation damage mitigation strategies have been done and are still going on to define the SiPMs annealing procedures
- The 2024 dRICH prototype has been assembled and tested at CERN PS
- From the results observed from beam tests:
 - First PID study for the ePIC dRICH with both aerogel & gas
 - Efficiently observed Cherenkov rings and identified the passing particle
 - The gas veto efficiently extends PID range excluding under-threshold pions

The ePIC experiment

Physics requirements for PID:

- pion, kaon and proton ID
- cover a wide range in pseudo-rapidity, $|\eta| \le 3.5$
- with better than 3σ separation
- significant pion/electron suppression

Hadronic Calorimeters

Particle Identification

Solenoid Magnet

Tracking

Electromagnetic Calorimeters

SiPM option and neutron fluence for dRICH sensors

Cons

- High dark count rate at room temperature
- **High radiation** sensitivity

What can be done?

- Cooling can lower DCR of a factor ~2 every ~8°C
- Timing can discard background
- Annealing can recover DCR resulted from radiation damage

10⁹ n_{eq}/cm² fluence:

Requirement for the key physics goals is 10 fb⁻¹ per center of mass energy and polarization setting

10¹⁰ n_{eg}/cm² fluence:

Requirement for the nucleon imaging programme is 100 fb⁻¹ per center of mass energy and polarization setting

10¹¹ n_{eq}/cm² fluence:

Expected fluence over 10-12 years of operation, might never be reached

Expected fluence:

average: ~4 105 neg / cm2 fb-1 maximum: $\sim 10_6 \, n_{eq} / \, cm_2 \, fb_{-1}$ assumed: ~ 107 neg / cm2 fb-1

x10 safety factor

Prototype evolution

2022 electronics v1

2023

electronics v2

-80 -60 -40 -20 0 20 40 60 80

x (mm)

2024

electronics v2.1

towards construction

2025 electronics v3

final prototype

Beam test setup (CERN PS 2023)

DAQ and DCS computers

auxiliary control electronics crates

gigabit ETH switch for DAQ and DCS

low voltage and high voltage power supplies

ePI ALCOR ASIC

Developed by INFN-TO

- 64-pixel matrix mixed-signal ASIC;
- current versions (v1,v2,v2.1) with 32 channels,
 wire-bonded;
- final version with 64 channels, BGA package, 394.08
 MHz clock;

Chip features:

- signal amplification
- conditioning and event digitisation

Single pixel features:

- 2 leading-edge discriminators
- 4 TDCs based on analogue interpolation
- 20 or 40 ps LSB (@ 394 MHz)
- Digital shutter to enable TDC digitisation
- Suppress out-of-gate DCR hits
- 1-2 ns timing window
- programmable delay with sub ns accuracy

Single-photon time-tagging mode:

- o continuous readout
- also with Time-Over-Threshold
- Fully digital output

ALCOR timing performance

DCR vs PDE - comparison between sensors

- DCR at the same level of detection efficiency (namely, the probability to detect light from laser pulse)
- different sensors have different DCR level
 - **best:** $S13360-3075 \rightarrow$ most promising sensors, large pitch SPADs (75 µm)
 - second: S13360-3050 (same technology, medium pitch SPADs, 50 µm)
 - worst: S14160-3050 (different technology, medium pitch SPADs, 50 μm)

proxy for photodetection efficiency

Beam test results - background studies

Beam test results - background studies

11.5 GeV/c negative beam, n = 1.02 aerogel (accumulated events)

2D fit to accumulated data with realistic model (ring + background)

event-by-event distribution of hits in the ring

background in ring region estimated with data taken without aerogel