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Soft gluon resummation

Different methods developed to deal with soft gluons
e In Monte Carlos: Parton Showers (PS)

e Transverse Momentum Dependent (TMD) factorization theorems
baseline: low g Collins-Soper-Sterman (CSS)

e SCET-based factorization
e small-x

e more recent TMD Parton Branching (PB)

Different approaches have different origin, assumptions, motivations, application, mathematical formalism,
successes and failures etc, ...
Connections and differences between them have to be understood

This talk:

TMD PB, especially PB Sudakov form factor and its relation to Sudakov of CSS




What is the TMD Parton Branching method?

< TMDs >—->< MC gen )-»( Predictions>



What is the TMD Parton Branching method?

) y \ \
TMDs —| MCgen |—| Predictions

Building blocks:

TMDs from forward evolution

TMD PS consistent with
forward evolution, with
TMDs as an input

matching & merging



What is the TMD Parton Branching method?

/ \
TMDs —| MCgen |—| Predictions
‘v/’ \v4 \;//’
Building blocks:

TMDs from forward e\(vhm
Today:

forward evolution,
especially Sudakov form factor
TMD PS consistent with
forward evolution, with

TMDs as an input

L KTH0

matching & merging



TMD evolution equation



Evolution in the TMD PB method

Hautmann, Jung, Lelek, Radescu, Zlebcik, Phys.Lett.B 772 (2017) 446 & JHEP 01 (2018) 070
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probability of an evolution without resorvable branchings between Mg and 2

® Sudakov form factor

e Splitting function PjJ(z, u?) - probability of b — a
P; & ng— divergent for z — 1 < soft gluons: zp defines resolvable and non-resolvable branchings

A= XA, z- splitting variable, x = zx, z € (0,1)



Transverse momentum in PB

e starting distribution at ;1,3:

- ~ 2
Aol g0 1) = ol 1) g o0 (40

e Initial distribution % o(x, ud) obtained from fits to inclusive DIS data . °
e Intrinsic transverse momentum ko constraint from DY data c
e transverse momentum k calculated at each branching

ki =ky —q, ky |0

k of the propagating parton is a sum of intrinsic transverse momentum and
all emitted transverse momenta

k = ko — >, q; — TMD from parton branching

How to relate g, and the evolution scale ' ?
— Ordering condition: Angular Ordering (AO) of S. Catani, G. Marchesini, B. Webber (CMW)
scale associated with the rescaled transverse momentum

gL =(1-2)y

AO assures PB TMDs do not have IR singularities
Moreover:

(’CS(QL)



AO picture

u? du'? zpm
A, (M27H§) ~ exp< / l (/ ka(as)l

AO of Catani-Marchesini-Webber (CMW): g, = (1 — )’

—dz - da(as)>)

If we assume minimum qo — zy = Zayn = 1 — qo/,u,'
Let's use zqyn as an intermediate scale, to divide the phase space:

e Perturbative: z < zyy,, where [q1 | > go (resolvable)
o NP: zgyn < z < zy (zm =1 — € with 0 > ¢ < 1), where |q. | < go (non-resolvable)

C_JResolvable region
I:lNon resolvable region
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Nucl.Phys.B 949 (2019) 114795

Using dynamical zyy = 1 — i—o, i.e. skipping the non-perturbative Sudakov in the evolution has interesting
consequences



CSS Sudakov form factor



Collins-Soper-Sterman (CSS)

do

dq

~ /dzbexp(ib-ql) /dzldzzH(Q2)

Fi(z1, b, scales)F2(z2, b, scales) + Y

where the TMD: F = f ® C ® VA
and the Sudakov A divided in perturbative and non-perturbative parts:

A = AP)ANP)



CSS Sudakov: CSS1

ASSSY(Q, Qo, b, Xay X5, brnax, C1, ) =

2
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0

A, () and B,(as) have series expansions: R, = 3, (as/27)"RY".

AP): Perturbative resummation
LL: ALY

NLL: A®) and B{Y,

NNLL by A2 and B{? etc.



Perturbative Sudakov




Perturbative Sudakov

After change of integration variables (1" — g1 = (1 —z)p/,)
2 D) 2
P Hodgl |1 1%
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the perturbative PB Sudakov coincides, in its overall structure, with the perturbative CSS1
Sudakov form factor

css1 (P) 2 ?
A; (H27 #i*) =exp| — 7 Aa(as)In — |+ Ba(as)
2 2 2

b

One can try to compare the exact forms of the PB coefficients with that of CSS1 to
determine the logarithmic accuracy achieved by the PB Sudakov form factor.
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the perturbative PB Sudakov coincides, in its overall structure, with the perturbative CSS1
Sudakov form factor

css1 (P) 2 ?
A; (H27 #i*) =exp| — As(as)In ([ —5 ) + Ba(as)
uz NQ ul2
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One can try to compare the exact forms of the PB coefficients with that of CSS1 to
determine the logarithmic accuracy achieved by the PB Sudakov form factor.
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e LOPand LL: k{0 = A = 14! |

I

e LOPand NLL: d® = —18M = 14 Lok In (4)| - asd?+a2Li" In (£ ) 24

e NLO P and NLL: k() = A® = 14 o T {
Here however this simple pattern breaks ! i Pattern

i breaks
Renormalization group mix the B, C, and H of the CSS formalism
A L
d§ ) _ _%8(2)MS
Difference between PB and CSS literature:
BAPY — (—2) - d) = 16Crmpo (¢2 — 1) and BO™ — (=2) - dV) = 16Camf3p (C2 + 1)



Double logarithmic coefficient at NNLL

Phys.Lett.B 868 (2025) 139762, A. Lelek et al.

Collinear anomaly:Becher & Neubert, Eur.Phys.J.C 71 (2011) 1665
the NNLL resummation coefficient AS) differs from the NNLO DGLAP coefficient k2.
The difference is:

808 112
A — KD = ComBo [CA <§ - 2843) - EM}

One obtains this result by differentiating the CS kernel with respect to In b2:

— k. = —76”?3([)*7“[7*)
? dlIn bi

The NNLL accuracy can be achieved by the usage of physical soft-gluon coupling
Catani et al., Eur.Phys.J.C 79 (2019) 8, 685

Banfi et al., JHEP 01 (2019) 083
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NNLL in PB

Phys.Lett.B 868 (2025) 139762, A. Lelek et al.

With NLO P
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where K£2) . kgo) = Ag.
All Sudakov coefficients at NNLL, i.e. AV, A®, A®), BM and B®M), are included in the PB

The middle row: standard NLO PB evolution

down, = 100 GeV down, x = 0.0011 = 100 GeV'
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Non-perturbative Sudakov




CSS Sudakov: CSS2

ASSSQ(Qa QO-, ba Xay X3, bmaxv Cl: C2) =

he q,,/ 2
f- [ (i (8) -0}

Q2
Xexp (_ga/A(Xaa b, bmax) - gE/B(X37 b, bmax) - gK,a(ba bmax) In ?)
0

_ Q2
X exp (Ka(b*,ub*) In T>
Hpx

K, perturbative CS kernel

8k,a the non-perturbative part of the CS kernel

8a/A, 83/8 and gk . the same as in the CSS1

A, and B; and vy, and v, do not coincide at all orders but they are related with
each other.

12



CSS Sudakov: CSS2

ASSSQ(Q QO b, » Xay X3, bmaxv Cl: C2) =
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CSS Sudakov: CSS2

ASSSQ(Q QO b, » Xay X3, bIIldX7 Cl: C2) =

exp {—/}:XQ (171 (rk a(as)In (S:) 2%(”5)> }

Q2
Xexp (_ga/A(Xaab» bmax) ga/B(Xau b, bmd.x) gK a(b bmax) In — )

o 2 > In CSS formalism:

y ~ Q
:‘\ xXexp (Ka(b*7 Nb*) In ol DY o lcabeCos)
Hps /. g‘iﬁ = K(be, 1)

Ra perturbative CS kernel CS kernel:
8k,a the non-perturbative part of the

e governs the rapidity evolution

8a/A: 85/ and gk , the same as in the

e contains non-perturbative information
Aa and Ba and Vk,a and Va do not coi e can be extracted from measurements
each other. e is the only QCD function which is largely unknown
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Non-perturbative PB Sudakov

Non-resolvable region:
Zgn < z < zym (zm =1 — e with 0 ~ € < 1), for which |g.| < qo
In PB, as = as(q.) — freeze at os(geut)

2 4,7 2 2
NP), 2 2 u? du 1—e Ka(as) kalous) L QG
A(a )(,u Mo, € do) = exp ( fuczj w2 J1—qou’ d2 =2 ) =t ( Tz (ug> In <62uou>>

2
In /12/[L§ resembles the structure of the NP CS kernel gk (b, bmax)In % — rapidity evolution
0

Remarks:
In the CSS literature: NP CS kernel modelled and fitted to data
In PB: Modelling of the NP Sudakov probes the AO picture (i.e. z4qyn ), & depends on a5 modelling (freezing)

b and p are related to each other:

e b is Fourier transform of k|
e k contains the whole evolution history, (ki = k1o — >, q.,i)
® g is related to the branching scales by the AO condition, i.e. g1 ,; = (1 — z)u' ;)

Next slides: extract the CS kernel from the PB approach

15



Models for numerical studies

We study 5 PB models which differ in the amount of (soft) radiation.
Amount of radiation modelled in terms of a and zy

Models with fixed zy, ~ 1:

o o). as = as(max(ad, ), 9o = 1.0 GeV (red)
o ag(u'?) (blue)

Models with as(g? ) and dynamical zy = 1 — qo/u’ (i.e. no non-perturbative Sudakov ):

e go = 1.0 GeV (purple)
e gy =0.5GeV ( )
e go = 0.5 GeV and gcut = 1 GeV (green)

down, p =100 GeV down, x = 0.001, p = 100 GeV
= T T T = 05 T T ™
X pf — a@zme’ = r o). 7,7110° )
% — o)z = r a,0%),2,71-10° o @0 (@) & fxed 2, ,=1.0 GeV, mean = 48.676793
—_— £ o4l 1./l 0710 Gev 1 2
—_— K E a(@). 7,719,205 Gev 2
— r a,@).2,71-04. 705 GeV. =10 Gev © 50 @) & fixed 2,, mean = 18.960003
(XS 3 3
[ S (@) 8 0yn 2, 6,+1.0 GeV, mean = 9.981797
r S
02 1 °
N r 3 2 e (@) 8 0yn 2, 0,05 GeV, mean = 14351279
£ o Jz
3 g 200
8 &
S s
g JE
N \ ; 1000
ol N S R
0 20 40 60 80 100 120
0 ! ! ! 0. 1 1 nb of branchings/event
10 10° 107 107 107 1 10 107
x Ik | (Gev]
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CS kernel

Phys.Lett.B 868 (2025) 139762, A. Lelek et al.

CS kernels extracted from PB DY predictions

D(b; 2 GeV)

In(x1(b) /X2 (b)) —In Z(Q1, Q) —2AR(Q1,Qi10)

— a(q)), zu=1-10" Db, o) = 41n(Q2/Q1) -t
— a(u?), zu=1-10"° .
—  a,(q2), Zu=1—qoli’, o =1.0 GeV Y1 and X, - Hankel transformed DY cross sections

a5(q2), zw =1 - qold', Go = 0.5 GeV.

Q Q@ 4
—  ay(ad), zw=1-qoli’, o= 0.5 GeV, Gy = 1.0 GeV AR(Q1, Qi pg) =, 021 L1, Q) — 21n % f#g B (1)

H 123

aZn(@)ICy(Q1ng,)I?

Z(Q1, Q) =
Q@) = 7 (@,

where Cy is the hard coefficient function.

All terms except X1 /%, are perturbative and known

up to up to N3LO
0.5 1.0 15 2.0 25 3.0 35 4.0

b [Gev'] The method of n . n Phys.Rev.D 106 (2022) 9, L091501

different modelling of radiation can lead to a very different kernel behaviour, including different slopes.
the results probe the AO picture, through «; and resolution scale zy

the curves with as(q ) are close to one another at small b

instead, the curve with (') is already very different at small b

note flattening behavior at large b in curve with g0 = 1 GeV

17



CS kernel

Phys.Lett.B 868 (2025) 139762, A. Lelek et al.
CS kernels extracted from PB DY predictions

129 — afedlzv=1-10"° ~— MAPP22
— ), 2 107 ASWZ
1.04 — @), 2=1-qol, qo=1.0 Gev E:EZCZZ)
(?), 2 =1 ol 9o = 0.5 GeV. o svzEs
o.g ] T G BN 1= Qo Go =05 GeV. e =10 Gev qTMDWF CG

ART23
— svi9

D(b; 2 GeV)

0.0 0.5 1.0 15 2.0 25 3.0 35 4.0
b [Gev~?]

e different modelling of radiation can lead to a very different kernel behaviour, including different slopes.
e the results probe the AO picture, through «; and resolution scale zy

e the curves with as(q ) are close to one another at small b

e instead, the curve with as(p’) is already very different at small b

e note flattening behavior at large b in curve with g0 = 1 GeV

e The curves spread over a wide range, covering extractions from other groups 17



Interplay of non-perturbative
Sudakov and Intrinsic-kt




Intrinsic kt vs center-of-mass energy & DY mass

Pythia, Herwig: the intrinsic k| is center-of-mass dependent

T. Sjostrand, Peter Z. Skands, JHEP 03 (2004) 053
Stef: flichael H. Sevmour. / S ok, JHEP 06 (2008) 001
= 3.0] T
8
B Method:
220
3 N e replicas of PB-NLO-HERAI+-11-2018-set2 created
§ v
§ " with gs scanned scanned between gs = 0.1 and
é 1 ‘ qs = 2.0 GeV with a step of 0.1 GeV;
" 10
gg F [ } e prediction for each DY measurement obtained
0.7 % F ; { with each replica;
0.6 P 1 .
05| PYTHAHERWIG ® for each measurement, the gs providing the best
Xio INDF = 1.27 h x2 was extracted
04 Pvalve =011 o T 7 .
[ o7 7o In PB, the /5 dependence of intrinsic-kt much weaker
VE [GeV] ENOER] 84 (2

than in other MCs

Phy

D 111 (2025) 7

s - [ —
8 | ruuen, No fit W[ i
o | i o 3 (
- 2
_ " The center-of-mass dependence of the intrinsic kt
— :Z comes from the treatment of soft gluons
, oo 4 I T When gy O(1GeV) is used, intrinsic kt depends on
07 center-of-mass energy
o Fit The slope increases with increasing qg
10° 10° 10° B . 0 ot
5 (GeV) e
Eur.Phys.J.C 85 (2025) 3, 278 JHEP 06 (2025) 192

The non-perturbative Sudakov (zy — 1) & as(q, ) crucial for intrinsic kt independent of /s
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Summary

We discussed PB Sudakov form factor
e AO-driven division of the phase space allows to get the Perturbative and model the Non-Perturbative
Sudakov
e P: logarithmic resummation (new: NNLL A®) included, in addition to single-log NNLL B(z))

e NP: rapidity evolution ( new: extractions of CS kernel from TMD PB, both with fixed and dynamical
zmax)

PB approach contains the Sudakov form factor (both perturbative and non-perturbative) exactly
corresponding to the Sudakov of CSS formulation.
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Summary

We discussed PB Sudakov form factor

e AO-driven division of the phase space allows to get the Perturbative and model the Non-Perturbative
Sudakov
e P: logarithmic resummation (new: NNLL A®) included, in addition to single-log NNLL B(z))

e NP: rapidity evolution ( new: extractions of CS kernel from TMD PB, both with fixed and dynamical
zmax)

PB approach contains the Sudakov form factor (both perturbative and non-perturbative) exactly
corresponding to the Sudakov of CSS formulation.

Thank you

19



	TMD evolution equation
	Transverse momentum in PB
	

	CSS Sudakov form factor
	Perturbative Sudakov
	Non-perturbative Sudakov
	Models
	CS kernel

	Interplay of non-perturbative Sudakov and Intrinsic-kt
	Summary

