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Soft gluon resummation

Different methods developed to deal with soft gluons

� In Monte Carlos: Parton Showers (PS)

� Transverse Momentum Dependent (TMD) factorization theorems

baseline: low q⊥ Collins-Soper-Sterman (CSS)

� SCET-based factorization

� small-x

� more recent TMD Parton Branching (PB)

Different approaches have different origin, assumptions, motivations, application, mathematical formalism,

successes and failures etc, ...

Connections and differences between them have to be understood

This talk:

TMD PB, especially PB Sudakov form factor and its relation to Sudakov of CSS
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TMD evolution equation



Evolution in the TMD PB method

Hautmann, Jung, Lelek, Radescu, Zlebcik, Phys.Lett.B 772 (2017) 446 & JHEP 01 (2018) 070
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Intuitive probabilistic interpretation ⇐⇒ easy to solve by Monte Carlo (MC) :

• Sudakov form factor
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probability of an evolution without resorvable branchings between µ2

0 and µ2

• Splitting function PR
ab(z, µ

2) - probability of b → a

PR
qq & PR

gg - divergent for z → 1 ⇔ soft gluons: zM defines resolvable and non-resolvable branchings

Ã = xA, z- splitting variable, x = zx1, z ∈ (0, 1)
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Transverse momentum in PB

� starting distribution at µ2
0:

Ãa,0(x, k
2
⊥0, µ

2
0) = f̃a,0(x, µ

2
0)

1
πq2s

exp

(
−k2⊥0

q2s

)
� Initial distribution f̃a,0(x, µ

2
0) obtained from fits to inclusive DIS data

� Intrinsic transverse momentum k⊥0 constraint from DY data

� transverse momentum k calculated at each branching

ka = kb − qc ,

k of the propagating parton is a sum of intrinsic transverse momentum and

all emitted transverse momenta

k = k0 −
∑

i qi → TMD from parton branching

How to relate q⊥ and the evolution scale µ′ ?

→ Ordering condition: Angular Ordering (AO) of S. Catani, G. Marchesini, B. Webber (CMW)

scale associated with the rescaled transverse momentum

q⊥ = (1 − z)µ′

AO assures PB TMDs do not have IR singularities

Moreover:

αs (q⊥)
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AO picture
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AO of Catani-Marchesini-Webber (CMW): q⊥ = (1 − z)µ′

If we assume minimum q0 → zM = zdyn = 1 − q0/µ
′

Let’s use zdyn as an intermediate scale, to divide the phase space:

� Perturbative: z < zdyn, where |q⊥| > q0 (resolvable)

� NP: zdyn < z < zM (zM = 1 − ϵ with 0 ≃ ϵ ≪ 1), where |q⊥| < q0 (non-resolvable)
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Nucl.Phys.B 949 (2019) 114795

Using dynamical zM = 1 − q0
µ′ i.e. skipping the non-perturbative Sudakov in the evolution has interesting

consequences
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CSS Sudakov form factor



Collins-Soper-Sterman (CSS)

dσ

dq⊥
∼
∫

d
2
b exp(ib · q⊥)

∫
dz1dz2H(Q2)

F1(z1, b, scales)F2(z2, b, scales) + Y

where the TMD: F = f ⊗ C ⊗
√
∆

and the Sudakov ∆ divided in perturbative and non-perturbative parts:

∆ = ∆(P)∆(NP)

7



CSS Sudakov: CSS1

∆CSS1
a (Q,Q0, b, xa, xã, bmax,C1,C2) =

exp
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0
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Aa(αs) and Ba(αs) have series expansions: Ra =
∑

n(αs/2π)
nR(n)

a .

∆(P): Perturbative resummation

LL: A
(1)
a

NLL: A
(2)
a and B

(1)
a ,

NNLL by A
(3)
a and B

(2)
a etc.
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Perturbative Sudakov



Perturbative Sudakov

After change of integration variables (µ′ → q⊥ = (1− z)µ′
⊥)

∆
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the perturbative PB Sudakov coincides, in its overall structure, with the perturbative CSS1

Sudakov form factor

∆
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One can try to compare the exact forms of the PB coefficients with that of CSS1 to

determine the logarithmic accuracy achieved by the PB Sudakov form factor.

� LO P and LL: k(0)
a = A(1)

a = 1
2γ

(1)
k,a

� LO P and NLL: d (0)
a = − 1

2B
(1) = 1

2γ
(1)
a

� NLO P and NLL: k(1)
a = A(2)

a = 1
2γ

(2)
k,a

Here however this simple pattern breaks !

Renormalization group mix the B, C , and H of the CSS formalism

d
(1)
a = − 1

2
B(2)M̄S

Difference between PB and CSS literature:

B(2)DY
q − (−2) · d (1)

q = 16CFπβ0 (ζ2 − 1) and B(2)H
g − (−2) · d (1)

g = 16CAπβ0

(
ζ2 +

11
24

)

9



Perturbative Sudakov

After change of integration variables (µ′ → q⊥ = (1− z)µ′
⊥)

∆
(P)
a (µ2, q20) = exp

(
−
∫ µ2

q20

dq2⊥
q2⊥

[
1

2
ka(αs) ln

(
µ2

q2⊥

)
− da(αs)

])
the perturbative PB Sudakov coincides, in its overall structure, with the perturbative CSS1

Sudakov form factor

∆
CSS1 (P)
a (µ2, µ2

b∗) = exp

(
−
∫ µ2

µ2
b∗

dµ′2

µ′2

[
Aa(αs) ln

(
µ2

µ′2

)
+ Ba(αs)

])
One can try to compare the exact forms of the PB coefficients with that of CSS1 to

determine the logarithmic accuracy achieved by the PB Sudakov form factor.

� LO P and LL: k(0)
a = A(1)

a = 1
2γ

(1)
k,a

� LO P and NLL: d (0)
a = − 1

2B
(1) = 1

2γ
(1)
a

� NLO P and NLL: k(1)
a = A(2)

a = 1
2γ

(2)
k,a

Here however this simple pattern breaks !

Renormalization group mix the B, C , and H of the CSS formalism

d
(1)
a = − 1

2
B(2)M̄S

Difference between PB and CSS literature:

B(2)DY
q − (−2) · d (1)

q = 16CFπβ0 (ζ2 − 1) and B(2)H
g − (−2) · d (1)

g = 16CAπβ0

(
ζ2 +

11
24

)
9



Double logarithmic coefficient at NNLL

Phys.Lett.B 868 (2025) 139762, A. Lelek et al.

Collinear anomaly:Becher & Neubert, Eur.Phys.J.C 71 (2011) 1665

the NNLL resummation coefficient A
(3)
a differs from the NNLO DGLAP coefficient k

(2)
a .

The difference is:

A
(3)
a − k

(2)
a = Caπβ0

[
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(
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− 28ζ3

)
−
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27
Nf

]
One obtains this result by differentiating the CS kernel with respect to ln b2⋆:

Aa − ka = −
dK̃a(b⋆, µb⋆ )

d ln b2⋆

The NNLL accuracy can be achieved by the usage of physical soft-gluon coupling
Catani et al., Eur.Phys.J.C 79 (2019) 8, 685

Banfi et al., JHEP 01 (2019) 083
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NNLL in PB

Phys.Lett.B 868 (2025) 139762, A. Lelek et al.

With NLO P
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a.

All Sudakov coefficients at NNLL, i.e. A(1)
a , A(2)

a , A(3)
a , B(1)

a and B(2,MS)
a , are included in the PB

The middle row: standard NLO PB evolution
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Non-perturbative Sudakov



CSS Sudakov: CSS2
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CSS Sudakov: CSS2
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CSS Sudakov: CSS2
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Non-perturbative PB Sudakov

Non-resolvable region:

zdyn < z < zM (zM = 1 − ϵ with 0 ≃ ϵ ≪ 1), for which |q⊥| < q0
In PB, αs = αs (q⊥) → freeze at αs (qcut)

∆(NP)
a (µ2, µ2

0, ϵ, q0) = exp

(
−
∫ µ2

µ2
0

dµ′2

µ′2
∫ 1−ϵ

1−q0µ
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ka(αs )
1−z
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− ka(αs )

2 ln

(
µ2

µ2
0
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ln

(
q20

ϵ2µ0µ

))

lnµ2/µ2
0 resembles the structure of the NP CS kernel gK,a(b, bmax)ln

Q2

Q2
0

→ rapidity evolution

Remarks:

In the CSS literature: NP CS kernel modelled and fitted to data

In PB: Modelling of the NP Sudakov probes the AO picture ( i.e. zdyn ), & depends on αs modelling (freezing)

b and µ are related to each other:

� b is Fourier transform of k⊥
� k⊥ contains the whole evolution history, (k⊥ = k⊥0 −

∑
i q⊥,i )

� q⊥,i is related to the branching scales by the AO condition, i.e. q⊥,i = (1 − zi )µ
′
⊥,i )

Next slides: extract the CS kernel from the PB approach
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Models for numerical studies

We study 5 PB models which differ in the amount of (soft) radiation.

Amount of radiation modelled in terms of αs and zM

Models with fixed zM ≈ 1:

� αs (q
2
⊥), αs = αs (max(q2

0 , q
2
⊥)), q0 = 1.0 GeV (red)

� αs (µ
′2) (blue)

Models with αs (q
2
⊥) and dynamical zM = 1 − q0/µ

′ (i.e. no non-perturbative Sudakov ):

� q0 = 1.0 GeV (purple)

� q0 = 0.5 GeV (orange)

� q0 = 0.5 GeV and qcut = 1 GeV (green)
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CS kernel

Phys.Lett.B 868 (2025) 139762, A. Lelek et al.

CS kernels extracted from PB DY predictions
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D(b, µ0) =
ln(Σ1(b)/Σ2(b))−ln Z(Q1,Q2)−2∆R (Q1,Q2;µ0)

4 ln(Q2/Q1)
− 1

Σ1 and Σ2 - Hankel transformed DY cross sections

∆R (Q1, Q2;µ0) =
∫Q1
Q2

dµ
µ

γF (µ, Q1) − 2 ln
Q1
Q2

∫Q2
µ0

dµ
µ

γk (µ)

Z(Q1, Q2) =
α2
em(Q1)|CV (Q1,µQ1

)|2

α2
em(Q2)|CV (Q2,µQ2

)|2

where CV is the hard coefficient function.

All terms except Σ1/Σ2 are perturbative and known

up to up to N3LO

The method of A. Bermudez Martinez and A. Vladimirov,Phys.Rev.D 106 (2022) 9, L091501

� different modelling of radiation can lead to a very different kernel behaviour, including different slopes.

� the results probe the AO picture, through αs and resolution scale zM

� the curves with αs (q⊥) are close to one another at small b

� instead, the curve with αs (µ
′) is already very different at small b

� note flattening behavior at large b in curve with q0 = 1 GeV
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CS kernel

Phys.Lett.B 868 (2025) 139762, A. Lelek et al.

CS kernels extracted from PB DY predictions
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� different modelling of radiation can lead to a very different kernel behaviour, including different slopes.

� the results probe the AO picture, through αs and resolution scale zM

� the curves with αs (q⊥) are close to one another at small b

� instead, the curve with αs (µ
′) is already very different at small b

� note flattening behavior at large b in curve with q0 = 1 GeV

� The curves spread over a wide range, covering extractions from other groups 17



Interplay of non-perturbative

Sudakov and Intrinsic-kt



Intrinsic kt vs center-of-mass energy & DY mass

Pythia, Herwig: the intrinsic k⊥ is center-of-mass dependent

T. Sjostrand, Peter Z. Skands, JHEP 03 (2004) 053

Stefan Gieseke, Michael H. Seymour, Andrzej Siodmok, JHEP 06 (2008) 001

Phys.Rev.D 111 (2025) 7, 072003
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0.6

0.8

1.0

1.2

1.4

1.6
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2.0

q s
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qs = 1.04± 0.08 GeV

CMS (2022) 13 TeV

LHCb (2022) 13 TeV

ATLAS (2015) 8 TeV

CDF (2000) 1.8 TeV

D∅ (2000) 1.8 TeV

CDF (2012) 1.96 TeV

CMS (2021) 8.16 TeV

PHENIX (2019) 200.0 GeV

E605 (1991) 38.8 GeV

Eur.Phys.J.C 84 (2024) 2, 154

Method:

� replicas of PB-NLO-HERAI+II-2018-set2 created

with qs scanned scanned between qs = 0.1 and

qs = 2.0 GeV with a step of 0.1 GeV;

� prediction for each DY measurement obtained

with each replica;

� for each measurement, the qs providing the best

χ2 was extracted.

In PB, the
√

s dependence of intrinsic-kt much weaker

than in other MCs

Eur.Phys.J.C 85 (2025) 3, 278 JHEP 06 (2025) 192

The center-of-mass dependence of the intrinsic kt

comes from the treatment of soft gluons

When q0 O(1GeV) is used, intrinsic kt depends on

center-of-mass energy

The slope increases with increasing q0

The non-perturbative Sudakov (zM → 1) & αs(q⊥) crucial for intrinsic kt independent of
√
s
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Summary



Summary

We discussed PB Sudakov form factor

� AO-driven division of the phase space allows to get the Perturbative and model the Non-Perturbative

Sudakov

� P: logarithmic resummation (new: NNLL A(3) included, in addition to single-log NNLL B(2))

� NP: rapidity evolution ( new: extractions of CS kernel from TMD PB, both with fixed and dynamical

zmax)

PB approach contains the Sudakov form factor (both perturbative and non-perturbative) exactly

corresponding to the Sudakov of CSS formulation.

Thank you
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