MFT-MUON Matching

Satoshi YANO (Hiroshima University)

Matching meeting

02/06/2025

Matching Parameters at AO2D Level

- Parameters to characterize the reconstructed track, x, y, q/p_T , λ , and ϕ are used for the matching
- The parameters used for matching are based on the deviation between MFT track and MCH track on the matching plane
 - Position: $\Delta X = X_{MFT} X_{MCH}$, $\Delta Y = Y_{MFT} Y_{MCH}$
 - Angle: $\Delta \lambda = \lambda_{MFT} \lambda_{MCH}$, $\Delta \varphi = \varphi_{MFT} \varphi_{MCH}$
 - Momentum: $\Delta q/p_T = q/p_{T MFT} q/p_{T MCH}$
- MFT tracking χ^2 /ndf can be used to remove electron track
- MFT and MCH standalone parameters are used as ML input
- Need sample that distinguishes between signal and background is necessary to make some ML models

Matching Parameter Distribution

• All combination contains both signal + background

Extract Background (Wrong-Matching) Sample from Data

• Background sample can be extracted by event mixing method

Signal (Correct-Matching) Sample from Data

- Tag-and-Probe (T&P) method is used to get signal sample
- T&P Procedure
 - Calculate the invariant mass of oppositely charged muon pairs
 - Select pairs within the J/ ψ mass window
 - Choose the muon with higher momentum as the Tag muon
 - Check whether the Tag muon passes the "tight" matching criteria
 - If the Tag muon passes, pairs of the best-matched MFT track associated with the other muon (the Probe muon) is considered as a signal sample

Extract Signal (Correct-Matching) Sample from Data

• Not tuned "Tag" muon selection is applied, but signal sample already can be extracted

