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Structure of Matter: 

Structure of matter depends on the resolution scale at which it is observed!
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Structure of Matter: 

Structure of matter depends on the resolution scale at which it is observed!

Higher 
resolution

Partons
quarks
anti-quarks
gluons
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Structure of Matter: 

Structure of matter depends on the resolution scale at which it is observed!

Higher resolution

The complex behavior of partons, including their 
momentum distributions, is governed by the 
strong interaction dynamics described by 
Quantum Chromodynamics (QCD) theory
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Parton Distribution Function (PDF):
The probability fa/p(x,Q) that a parton a carries fraction x of the proton’s momentum

Q: energy scale
x: momentum fraction 

QCD Factorization in case of DIS: 

DIS process:  e + p            e + X

Partonic scattering 
cross-section

 PDFs
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Parton Distribution Function (PDF):
The probability fa/p(x,Q) that a parton a carries fraction x of the proton’s momentum

Q: energy scale
x: momentum fraction 

QCD Factorization in case of DIS: 

DIS process:  e + p            e + X

Partonic scattering 
cross-section

 PDFs

PDF properties:

• Universal ( independent of the process)

• Q-dependence governed by DGLAP evolution equations

• Non-perturbative: x-dependence of PDF is NOT calculable in pQCD
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Nuclear PDFs (nPDFs):
nPDF describes the momentum distribution of partons (quarks and gluons) inside a nucleus

Shadowing

Anti-shadowing

EMC

S
ch

ie
nb

e
in

, 
e

t 
al

.,
 a

rX
iv

: 
09

07
.2

35
7

we can incorporate these modifications into universal nuclear PDFs under certain 
theoretical assumptions and kinematic conditions.

Fermi

Nuclear correction ratio:
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Nuclear PDFs (nPDFs):
nPDF describes the momentum distribution of partons (quarks and gluons) inside a nucleus

Where are nPDFs useful?

 High-Energy Collider Physics (LHC & RHIC)
    essential for predicting the outcomes of collisions involving nuclear targets

• Neutrino Physics
    Nuclei are used as targets in neutrino scattering experiments to increase the interaction probability

 Nuclear Structure
    provide a deeper insights into our understanding of nuclear matter. 



Global Analysis of nPDF

Q dependence is governed by PQCD (DGLAP evolution equations)

x dependence of PDF is NOT calculable in pQCD

Global PDF fits:

Harland-Lang DIS2024

measured cross section from 
diverse experiments

Methodology Precision Calculations: NLO & NNLO
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nCTEQ, EPPS, 
NNPDF, ect

Standard library (LHAPDF)
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Global Analysis of nPDF

Input function at Q
0

Parameterize nuclear PDF at initial scale: 1.3GeV

DGLAP evolution
Compute theory predictions at scale Q by 

solving DGLAP equations

Construct χ2 function
Calculate the goodness of fit in terms of theory 

predictions, data and uncertainties

Minimization
Minimize χ2 function with respect to nPDF parameters

Experimental data
Choose experimental data (e.g. DIS, DY, W/Z, 

 etc.) and apply kinematical cuts

Uncertainties estimation
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nPDF uncertainties estimation

The Hessian method is widely used for error estimation in both proton and nuclear PDFs.

It relies on the quadratic behavior of the χ2 function near the minimum.

Shortcomings:
 Non-gaussian errors
 Global minima judgment
 Choice of χ2 tolerance

• Lacking data (range and precision of data for nuclei are generally lower than for proton)

• Complexity and nature of nuclear effects 
nPDF difficulties:
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nPDF uncertainties estimation

The Hessian method is widely used for error estimation in both proton and nuclear PDFs.

It relies on the quadratic behavior of the χ2 function near the minimum.

Shortcomings:
 Non-gaussian errors
 Global minima judgment
 Choice of χ2 tolerance

• Lacking data (range and precision of data for nuclei are generally lower than for proton)

• Complexity and nature of nuclear effects 
nPDF difficulties:

Markov Chain Monte Carlo method

advanced statistical method as an alternative for Hessian
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Global Analysis of nPDF

Input function at Q
0

Parameterize nuclear PDF at initial scale: 1.3GeV

DGLAP evolution
Compute theory predictions at scale Q by 

solving DGLAP equations

Construct χ2 function
Calculate the goodness of fit in terms of theory 

predictions, data and uncertainties

Minimization
Minimize χ2 function with respect to nPDF parameters

Experimental data
Choose experimental data (e.g. DIS, DY, W/Z, 

 etc.) and apply kinematical cuts

Uncertainties estimation

MCMC method
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A technique for randomly sampling a
probability distribution and approximating a 

desired quantity.

A sequence of random variables where the current 
value is dependent on the value of the prior variable 

( Memory-less property)

Bayes theorem:

Prior: initial belief about the parameter before considering the data.
Likelihood: probability of observing the data given a specific value of the parameter.
Posterior: updated belief about the parameter given the data.

Markov Chain Monte Carlo ( MCMC )
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We aim to find the set of nPDF parameters that maximizes the posterior probability 
distribution given the experimental data.

Likelihood:

Statistical error
Correlated and uncorrelated

 systematic errors
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Posterior distribution

Sampling based on 
the distribution

statistics/estimations
From the sample

samples

Bayesian inference MCMC algorithms

We aim to find the set of nPDF parameters that maximizes the posterior probability 
distribution given the experimental data.

Likelihood:

Statistical error
Correlated and uncorrelated

 systematic errors
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Metropolis algorithm: 

Initialize parameters

for i=1 to i=N:

    multiplicity =1

    Proposing new parameters 

    Compute acceptance probability

    Sample from uniform distribution 

    If                              then 

    Else                    (multiplicity +=1)

Multiplicity: the number of consecutive rejections of proposed points before an acceptance occurs.

Each point in the chain represents a vector of the posterior parameter values.
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nPDF fit setup

Fit properties:
 fit NLO QCD predictions

 Kinematic cuts: Q > 2GeV, W > 3.5GeV, p
T
 > 3.0 GeV

 NC & CC DIS, W/Z boson and Heavy Quark 

 10 free parameters: 2 gluon, 6 valence, 2 sea

 Parameterization:

  Pb PDF fit

 Multiple nuclei PDF fit

Functional form for bound protons at Q
0
:

Atomic number dependence:

CJ15

Accardi et al., arXiv:1602.03154
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MCMC setup:

Adaptive MH algorithm setup:

The algorithm starts with a normal random-walk MH phase until N
0 
samples have been generated

Then it switches to a self-learning proposal distribution

To boost the convergence, the algorithm restarts from its current mean value * 

Proposal distribution: Multivariate Gaussian with fixed covariance C
0

Adaptive proposal distribution: Multivariate Gaussian with self learned covariance C
i 
(covariance from collected 

samples so far)

*The fixed covariance matrix is first given by a fraction of initial parameter values and then after restarting, it adjusts to 
the fraction of diagonal elements in the current self-learned covariance C

i
  



16

Markov chain generated for Pb PDF parameters (W/Z and Heavy Quark and ν-DIS(chorus); 1448 data )

Generating this chain took about 20 days on 1 cpu
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Histogram of χ2 value which is 
fitted via χ2 function

 MCMC can reveal non-Gaussian features of the underlying distribution

diagonal: histogram of 
each parameter
off-diagonal: 2D 
correlation plots 
between parameters

Pairwise plot 
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Error estimation:

Autocorrelation function (ACF):

Integrated autocorrelation time:
Gamma-method

Estimating by analyzing the sum of 
autocorrelation up to a certain lag W

opt

Monte Carlo error estimation
(uncorrelated)

MCMC error estimation
(correlated)

measures the correlation between 
samples separated by a certain lag k

measures how many steps it takes for the samples 
in the chain to become effectively independent
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Why Thinning?

 It provides an uncorrelated chain so we can use Monte-Carlo error estimation:

 We aim to generate a set of PDF grids corresponding chain’s units. Thinning the chain makes it 
more applicable. 

Thinning method: 

keep only every k-th sample in the Markov chain and discard the rest
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ACF and integrated autocorrelation time:

For uncorrelated samples:

Thinned by 50 Thinned by 600
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 Generating Multiple Chains
Each chain starts with random values from the Hessian fit results. Use different random seeds

 Removing Burn-In Phase
Discard the initial segment of each chain, known as the burn-in or thermalization phase, which represents 
the period before the chain converges to the target distribution

 Thinning Each Chain
Apply thinning to each chain to reduce the autocorrelation, aiming to retain only uncorrelated samples

 Combining Uncorrelated Samples
Merge all the thinned, uncorrelated samples from the different chains into a single chain

 Estimating Parameters and Uncertainties
Use the combined set of uncorrelated samples to estimate the values of nPDF parameters and their 
uncertainties.

 generating an LHAPDF set
Construct nPDF corresponding to each unit of the combined chain and perform error estimation in the level 
of nPDF (Saving them in the standard LHAPDF format so that anyone can use such nPDFs)

Methodology: 



Final Chain (combined):
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nPDFs uncertainties:

Percentile method (68% CI asymmetric)
 central value: 50th percentile of distribution of samples
 lower (upper) bound: 16th (84th) percentile of distribution of samples

Cumulative χ2

 central value: the best-fit sample with the minimum  χ2 value
 lower (upper) bound: minimum (maximum) value of the the samples found within this 68%  

χ2 quantile range

[A. Putze et al., arXiv: 0808.2437]
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Pb208 PDF resulting from MCMC (percentile & cumulative χ2 methods for uncertainty 
estimation) and Hessian methods
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Conclusion:

Despite the MCMC challenges (mainly computational cost), this method has become a 

powerful tool for determining nPDFs and so far we have obtained  promising results 

(comparing with Hessian) for Pb PDF fit

We would like to extend this approach for multiple nuclei PDF fits and investigate 

additional statistical methods for estimating Markov Chains uncertainty. 

Acknowledgment:
This work was supported by Narodowe Centrum Nauki under grant no.\ 2019/34/E/ST2/00186.
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Nuclear Parton Distribution Function (nPDF)

Experimental data:
 NC & CC DIS

 LHC W/Z production

 Heavy Quark production (HQ)
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nPDF fit setup

Fit properties:
 fit NLO QCD predictions

 using heavy quark effects (ACOT)

 Kinematic cuts: Q > 2GeV, W > 3.5GeV, p
T
 > 3.0 GeV

 NC & CC DIS, W/Z boson and Heavy Quark 

 10 free parameters: 2 gluon, 6 valence, 2 sea

 Parameterization:

  Pb PDF fit

 Multiple nuclei PDF fit

Functional form for bound protons at Q
0
:

Atomic number dependence:

CJ15
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Markov chains without any prior
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Prior setup:

Prior            we just use a uniform prior for the parameter: 

Scan of the χ2 function along the nPDF parameters:
 (varying always one free parameter at a time while other 

parameters were left fixed at the global minimum)



Scan of the χ2 function along dv-a3 parameter 



Restarting the chain at 
10,000 and 20,000

N
0
 = 5000

Starting point: global minimum from Hessian fit + Gaussian noise (width= 20 % of minimum value) 
Thermalization (burn-in phase): removing first 8000 accepted points







MH vs adaptive MH
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