

Medical Radioisotopes Study Using AIC-144 Cyclotron

dr Arshiya Anees Ahmed (NZ64) 27-02-2025

Isotopes

Sourcec: https://www.iaea.org/newscenter/news/what-are-isotopes

Radioisotopes

Agriculture

Radioisotopes for Medicine

			Ρ	eri	odi	ic T	ab	le d	of t	he	Ele	em	ent	s			
- 2 - H	2 14				.Barathata Bara		8 . S -	Syntosi				13 ISA	14	15 VA	IS VIA	VIA.	He
Li	Be	States of the	native (polar of re SOLID (polar	a 1	Unclease per shall antiogory in the se likeli metals likeling and Thread	tel estatisit or Battar Battar Battar	netertal travel (cd obs: 6	er af symbol) Helsbach Banchverson		krawn chemical (a quantina	B	-C #=	Ň	0	F	Ne
Na	Mg		rite Tri	* ***		yis Ma			10 Vite		18 7 -		Si		5 jt= ~		
Rb	Sr	Ŷ	Žr	Ňb	Mo	Tc	Ru	Rh	Pd	Aa	Cd	Sa in	Sn Sn	AS New Sb	Se Status Te		Xe
Čs.	Ba		Hf	Ta	Ŵ	Re	0s	inter Ir	Pt	Au	Hg	-r.	Pb	Bi	Po	At	Rn
Fr Fr Tractor	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FL	Mc	LV LV	Ts	Og
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Ть	Dy	Ho	Ër	Tm	Yb	Lu	
		AC AC	Th bitter	Pa Pa Pa Maria			Pu	Am	Cm State	Bk Bk Enterior Mainten	Cf Cf	ES Es interest intere	Fm	Md	No No No No No	Intern Lr Ler Internet	

118 elements

94 naturally occurring

254 stable isotopes

> 3000 radioisotopes

84 seen in nature

Radioisotopes for Medicine

Selection criteria

- → Should emit only the radiation required for its medical application increase the radiation dose
- → Should have $T_{1/2}$ in corresponding to the medical procedure Should decay to stable or very long-lived isotope
- \rightarrow Should easily build stable complexes with desired radiotracers

 \rightarrow should have a feasible, cost-effective, and safe production route

< 50 radioisotopes

Radioisotopes for Medicine

Methods of Radioisotope Production

Motivation

Isotope shortage looms after reactor shutdown | The Star

Visit

NRU Canada

IAEA assesses ageing management at Dutch research reactor : Regulation &...

Visit

HFR Netherlands

Motivation

NRU Canada

HFR Netherlands

https://www.thestar.com/news/canada/2009/05/19/isotope_shortage_looms_after_reactor_shutdown.html https://www.world-nuclear-news.org/Articles/IAEA-assesses-ageing-management-at-Dutch-research

Motivation

T.J. Ruth Nature 457, (2009)

T.J. Ruth, La Physique AU Canada 66, 15 (2010) https://www-pub.iaea.org/MTCD/publications/PDF/TE-1945web.pdf https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1589_web.pdf https://www-pub.iaea.org/MTCD/publications/PDF/P1937_web.pdf

10

Facility

Fig: Cyclotron AIC-144, IFJ-PAN Cracow, Poland

• Proton Beam parameters

Energy - 60 MeVCurrent -10 - 30 nA

 Low Z materials are used to degrade the beam energy

Facility

Energy and efficiency calibrated HPGe detector was employed to for gamma-spectroscopy.

Calibration sources => 241 Am, 133 Ba, 109 Cd, 60 Co, 137 Cs, 152 Eu, and 22 Na

⁹⁹Mo/^{99m}Tc

 \rightarrow ^{99m}Tc is widely used radioactive "tracer isotope"

 \rightarrow Used in more than 80% nuclear medicine imaging procedure

Examples:

SPECT scanning

Bone scan

Brain imaging

 $\tau_{(99Mo)}$ = 66 h → Decays to ^{99m}Tc $\tau_{(99mTc)}$ = 6.01 h → fast removal from patient's body

https://www.medgadget.com/2007/10/symbia e series spect imager.html

https://www.semc.org/services-directory/imaging-radiology/diagnostic-imaging-center/nuclear-medicine/bone-scan

https://www.britannica.com/science/brain-scanning

⁹⁹Mo/^{99m}Tc

LA PHYSIQUE AU CANADA / Vol. 66, No. 1 (jan. à mars 2010)

A SHORT TERM SOLUTION TO THE MEDICAL ISOTOPE CRISIS VIA DIRECT PRODUCTION OF TC-99M AT LOW ENERGY: A PIECE OF THE PUZZLE

BY THOMAS J. RUTH, TRIUMF

The recent unexpected shutdown of the Chalk River, Canada reactor has caused a major disruption in the supply of the most important radionuclide used in medicine today, Mo-99. Mo-99 is the source of Tc-99m used in more than 80% of all nuclear medicine imaging procedures. There are only 5 reactors that are presently used in the production of Mo-99 and all of these reactors are over forty years old, the one in Chalk River, the NRU, is 52 years old. The NRU and the HFR reactor in the Netherlands account for more than 60% of the world's supply. The NRU is closed because of a heavy water leak in the containment vessel releasing tritiated water into the holding tank. The HFR reactor had a leak in a coolant pipe earlier in 2009 and is due for an extended shutdown in 2010 to repair this leak. To over come the shortfall IAEA meeting (2010, in Vienna)

- 14 research group assigned
- ¹⁰⁰Mo (p,x) ^{99m}Tc/⁹⁹Mo is best short-term solution

Reported experimental cross section found large discrepancy for proton induced reactions

Single target irradiation

lsotope	Abundance	lsotope	Abundance
⁹² Mo	14.65%	⁹⁷ Mo	9.58%
⁹⁴ Mo	9.19%	⁹⁸ Mo	24.29%
⁹⁵ Mo	15.87%	¹⁰⁰ Mo	9.74%
⁹⁶ Mo	16.67%		

Al protons 11.7 mm 26 MeV 60 MeV 19 MeV 65 nA 29 nA Mo 0.5 mm thick

Mo with natural abundance with 0.5 mm thick and 25 mm diameter metallic disc used as target

Experimental details

- → Energy range 19-26 MeV
- \rightarrow 5 hours of irradiation
- \rightarrow 18 hours of cooling time

Data analysis

$$A_{i,j} = \frac{\dot{n}_{i,j}}{f_j \epsilon_j \tau_j (1 - e^{-t_{\text{meas},i}/\tau_j})},$$

Reaction cross section and target yield

$$\sigma(E) = \frac{Z \cdot e \cdot M \cdot A_{\text{EOB}}}{H \cdot N_A \cdot \rho \cdot d \cdot I \cdot (1 - e^{(-\lambda \cdot t_{irr})})}$$

$$TY(E) = \frac{A_{\rm EOB}}{I \cdot \tau \cdot (1 - e^{-\lambda \cdot t_{irr}})}$$

- Z atomic number of the projectile
- e elementary charge
- + M atomic mass of the target material
- *H* abundance of the target
- N_A Avogadro's number
- ρ target density [g/cm³]
- d target thickness [µm]
- I beam current [μ A]
- + λ decay constant of the radioisotope [s^1] and
- *t*_{*irr*} irradiation time [s].

Single target irradiation

Cross section of radionuclide produced through nat/100 Mo (p, x) reactions averaged over the proton energy range 19-26 MeV where panels a, b, c, d, e and f respectively represent cross sections of 94Tc, 95Tc, 95Tc, 95Tc, 99Tc and 99Mo. The Grey band represents standard deviation of literature data.

Stack-foil activation

- → Energy range 0-17 MeV
- \rightarrow 5 hours of irradiation
- \rightarrow 2 hours of cooling time
- → Stack foil activation technique
- \rightarrow Cu foils are used to monitor the beam current.

Stack-foil activation

Fig.: Production cross-section and yield of ^{nat}Mo(p, x) reactions. Here, the horizontal error bars represent the range of energy degradation within the ^{nat}Mo target.

Stack-foil activation

Fig.: Production cross-section and yield of natMo(p, x)⁹⁹Mo reactions. Here, the horizontal error bars represent the range of energy degradation within the natMo target.

Fig: Decay scheme of ⁴⁷Sc

- \rightarrow T_{1/2}(⁴⁷Sc) = 3.3 days
- \rightarrow E_y = 159 keV
- \rightarrow E_{β} = 440, 600 keV
- \rightarrow ⁴⁷Ca/⁴⁷Sc generator
- \rightarrow Chemistry similar to ¹⁷⁷Lu
- \rightarrow $^{44,47}Sc$ pair or ^{47}Sc good theranostic radionuclides

LOOK

radionuclides

https://doi.org/10.1186/s41181-021-00131-2

Experimental details

Fig: Schematics stack foil activation method

Monitoring reactions

- \rightarrow ^{nat}Al (p,x) ^{22,24}Na
- → ^{nat}Cu (p,x) ^{56,58}Co, ⁶⁵Zn

 \rightarrow ^{nat}Ti (p,x) ⁴⁸V

Ca Targets

Table: Isotopic abundance of ^{nat}Ca

Isotopes	Abundance (%)
⁴⁰ Ca	96.941
⁴² Ca	0.647
⁴³ Ca	0.135
⁴⁴ Ca	2.086
⁴⁶ Ca	0.004
⁴⁸ Ca	0.187

Table: Chemical admixtures in the Ca compounds

Elements	Content (%)				
	CaO	CaCO ₃			
Cl		0.01			
SO_4		0.1			
As	0.0003	0.0005			
Ba		0.01			
Zn	0.002	0.01			
Cu	0.001	0.001			
Pb	0.001	0.0001			
K		0.05			
Na		0.05			
Sr		0.1			
Fe		0.003			

CaO

 \rightarrow **16 – 60 MeV** proton energy range

- \rightarrow 5 h irradiation
- \rightarrow **34.4 nA** beam current
- \rightarrow 15 data points
- \rightarrow Target dimesions

0.10 – 0.21 g

0.7 ± 0.3 mm thick

 $10.0 \pm 0.1 \text{ mm diameter}$

CaCO₃

Results

Reaction cross-sections

Target yield

Ge (p,x) reactions

Experimental details

Fig: Schematics of one of the experiments using Ge targets

⁷⁰Ge

^{nat}Ge

Isotopes	Abundance (%)				
	natGe	⁷⁰ Ge			
⁷⁰ Ge	20.37	95.56			
⁷² Ge	27.31	4.36			
⁷³ Ge	7.76	0.04			
⁷⁴ Ge	36.73	0.03			
⁷⁶ Ge	7.83	0.01			

Ge (p,x) reactions

natGe

- \rightarrow **14 60 MeV** proton energy range
- \rightarrow 5 h irradiation
- \rightarrow 18.5 **nA** beam current
- \rightarrow 10 data points
- \rightarrow Target dimesions
 - 0.11 0.29 g
 - 1.1 ± 0.3 mm and 0.5 ± 0.1 thick
 - 8.0 ± 0.1 mm diameter

⁷⁰Ge (95%)

^{nat}Ge (p,x) reactions

Results

Reaction cross-sections

E_p [MeV]

Zn-65

27/02/2025

emitters

E_p [MeV]

^{nat}Ge (p,x) reactions

Results

Reaction cross-sections

- ^{66,67}Ga, ⁶⁹Ge are Promising positron emitters
- ⁶⁸Ge will be the radio generator for ⁶⁸Ga

⁷⁰Ge (p,x) reactions

Results

Reaction cross-sections

Conclusions

 \rightarrow Experiments using proton beam of AIC-144 accelerator on different target materials are conducted for the study of production of radioisotopes was conducted.

→ It was demonstrated that use of ^{nat}Mo target could provide very pure ⁹⁹Mo source for extraction of ^{99m}Tc with standard methods.

→ Proton-induced reaction cross-section data for ${}^{47}Sc$ medical radionuclide was measured on ${}^{nat}CaO$ and ${}^{nat}CaCO_3$ materials

 \rightarrow CaO target are more favorable

 \rightarrow Using ^{nat}Ge target one could produce multiple medical radionuclides such ⁷²As, ^{66,67}Ga, and ^{68,69}Ge

→ <u>https://doi.org/10.1016/j.radphyschem.2025.112594</u> <u>https://doi.org/10.1088/1361-6471/ada8c6</u> <u>https://doi.org/10.1016/j.radphyschem.2023.111290</u> <u>https://doi.org/10.1016/j.radphyschem.2023.110821</u> <u>https://doi.org/10.1016/j.radphyschem.2021.109774</u> <u>https://doi.org/10.5506/AphysPolB.50.1583</u>

References

- 2. S. Takács et al. Nucl. Instrum. Meth. 2002; B 198: 183-196.
- 3. M. Bonard et al. Appl. Radiat. Isot. 2002; 57: 617-635.
- 6. A. A.Alharbi et al. Radiochim. Acta 2011 99: 763-770.
- 7. A. A.Alharbi et al. Radioisotopes -Applications in Bio-Medical Science. Prof. Nirmal Singh (Ed.), ISBN: 978-953-307-748-2.
- 8. F. Tárkányi et al. Nucl. Instrum. Meth. 2012; B280: 45-73.
- 9. P. Chodash et al. Appl. Radiat. Isot. 2011; 69: 1447-1452
- 10. S. M. Qaim Nucl. Med. Biol. 2017; 44: 31-49.

- 11. O. Lebeda et al. Appl. Radiat. Isot. 2010; 68: 2355-2365.
- 12. S. Takács et al. Nucl. Instrum. Meth. 2015; B347: 26-38.
- 13. K. Szkliniarz et al. Modern Phys. Letters. A 2017; 32(17):
- 1740012-1-1740012-11.
- 14. J. Červenák et al. Nucl. Instrum. Meth. 2016; B380: 32-49.
- 15. S. M. Qaim et al. Appl. Radiat. Isot. 2014; 85: 101-113.
- 17. M. C. Lagunas-Solar et al. Appl Radiat Isot 1991; 42(7): 643-657.
- 26. Experimental nuclear reaction data (EX-FOR), 2018. Database version of November 29.2018. Available at:

https://www-nds.iaea.org/exfor/exfor.htm