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Putting it to work...
1D fit of the signal yield

N data events have been collected in an experiment yielding a scalar random
variable x:

The sample consists of a mixture of signal and background events with
known p.d.f.’s.

Background p.d.f.: fB(x) = 1
τ e
−x/τ , τ = 5,

Signal p.d.f.: fS(x) = 1√
2πσ2

e−(x−µ)2/2σ2

, µ = 10, σ = 3,

The varaible x has been recorded in the range (0, 30).

No assumption about background yield can be made: N = NS +NB .

Our task is to:

1 Estimate number of signal events NS in the observed sample,

2 assess the error of the NS estimate from the logL or χ2 profile.

MIND: This is NOT an extended fit.
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Putting it to work...
1D fit of the signal yield

We shall use three strategies:

1 the Unbinned Maximum Likelihood fit:
Unbinned ML Python notebook template in Colab

2 the Binned Maximum Likelihood fit; 10 bins over (0, 30):
Binned ML Python notebook template in Colab

3 the Binned Least Squares (NOT modified) fit; 10 bins over (0, 30):
Binned LS Python notebook template in Colab

and four data samples:

1 pickled data sample 1 from GitHub

2 pickled data sample 2 from GitHub

3 pickled data sample 3 from GitHub

4 pickled data sample 4 from GitHub

All shall be executed on the Google Colaboratory platform.
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https://colab.research.google.com/github/bruckman/KISD_Statistics_ex-1/blob/master/ML_fit_template.ipynb
https://colab.research.google.com/github/bruckman/KISD_Statistics_ex-1/blob/master/MLB_fit_template.ipynb
https://colab.research.google.com/github/bruckman/KISD_Statistics_ex-1/blob/master/LS_fit_template.ipynb
https://github.com/bruckman/KISD_Statistics_ex-1/raw/master/raw_data_1_tau5.npy
https://github.com/bruckman/KISD_Statistics_ex-1/raw/master/raw_data_2_tau5.npy
https://github.com/bruckman/KISD_Statistics_ex-1/raw/master/raw_data_3_tau5.npy
https://github.com/bruckman/KISD_Statistics_ex-1/raw/master/raw_data_4_tau5.npy


Detailed instructions

−→ Click on one of the Python notebook links in order to open it in Google
Colaboratory.

−→ Click to download the assigned dataset file from GitHub.

−→ Click on one of the Files icon on the left bar of your Colab interface. If you
cannot see any datafiles, click on the Upload button and select previously
downloaded file. As a result you should see:
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Hints part 1: fit the Ns, logL or χ2 function
−→ You need p.d.f. normalization factors in the range (0,30). For this purpose calculate
scales and scaleb just as it is done in the main part of the Python script. You will
need xmin, xmax, tau0, mu0 and sigma0.
−→ You need the total number of collected events. For the unbinned ML this is just the
length of the data vector (len(data)). For the binned methods loop over the hist

array and sum all entries. nbins=len(hist) gives you the number of bins.
−→ For the unbinned ML you need to loop over the data array, for each entry calculate
the normalized p.d.f.’s (gauss & decay) and acumulate logL according to Eq. (25) of
lecture 4 and using the combined S+B p.d.f.
−→ For the binned methods you need to loop over the bins, the hist array (e.g. for k

in range(nbins)). You need to get the prediction for the bin by integrating the
normalized p.d.f., see Eq. (11) of lecture 5. Bin k is delimitted by binsy[k] and
binsy[k+1].
−→ For the binned ML increment the logL using Eq. (13) of lecture 5 and the combined
S+B p.d.f.
−→ For the binned LS increment the χ2 using Eq. (36) of lecture 5 and the combined
S+B p.d.f.
−→ NOTE: We are fitting just one free parameter, NS (coded as mus). Make sure you
properly define the combined S+B p.d.f. using NS and the total number of collected
events.
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Hints part 2: estimate the error on Ns using logL or χ2

profile

−→ The code provides you with the pl & ll array arrays which contain the estimated
NS and the corresponding value of either logL or χ2, respectively.
−→ Your task is to find values of NS corresponding to +1σ and −1σ about the fitted
value (coded as sigma neg & sigma pos).
−→ For the purpose, recall Eq. (7) and Eq. (32) of lecture 5.
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Example solution
Unbinned Maximum Likelihood

logL function definition:
Uncertainties from the logL profile:

Results:

DS 1: NS = 21.52 + 7.82− 7.47
DS 2: NS = 29.99 + 7.93− 7.69

DS 3: NS = 18.29 + 7.69− 7.32
DS 4: NS = 21.09 + 7.94− 7.55
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Example solution
Unbinned Maximum Likelihood

Fit uncertainty obtained from the logL profile at logL(NS ± σNS ) = logLmax − 1
2

.
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Example solution
Binned Maximum Likelihood

logL function definition:
Uncertainties from the logL profile:

Results:

DS 1: NS = 23.73 + 8.07− 7.75
DS 2: NS = 29.90 + 8.05− 7.80

DS 3: NS = 17.45 + 8.02− 7.60
DS 4: NS = 22.76 + 8.19− 7.86
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Example solution
Binned Maximum Likelihood

10 bins:

Fit uncertainty obtained from the logL profile at logL(NS ± σNS ) = logLmax − 1
2

.
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Example solution
Binned Maximum Likelihood

100 bins (for very fine binning result converges to the unbinned one!):

Fit uncertainty obtained from the logL profile at logL(NS ± σNS ) = logLmax − 1
2

.
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Example solution
Binned Least Squares

χ2 function definition: Uncertainties from the χ2 profile:

Results:

DS 1: NS = 23.74 + 7.93− 7.49
DS 2: NS = 28.32 + 7.40− 7.05

DS 3: NS = 17.11 + 7.95− 7.42
DS 4: NS = 23.04 + 8.19− 7.67
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Example solution
Binned Least Squares

10 bins:

Fit uncertainty obtained from the χ2 profile at χ2(NS ± σNS ) = χ2
min + 1.
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Example solution
Binned Least Squares

100 bins (cannot reproduce the ML result exactly):
Small and empty bins make the uncertainty estimation less reliable.

Fit uncertainty obtained from the χ2 profile at χ2(NS ± σNS ) = χ2
min + 1.
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Statistical error & confidence interval
Limits & signal significance

So far, our discussion of uncertainties was mostly limited to (co)variance, or
simply standard deviation.

At some point we discussed quantiles of the Gaussian distribution to be more
quantitative about the probability of a statistical outcome (Lecture 3),

We also discussed statistical tests (Lecture 4),

We also talked about goodness-of-fit and significance of the signal (Lecture
4),

Finally we introduced the Pearson’s χ2 test (Lecture 3).

Now we shall be more detailed on confidence interval...
For a Gaussian distributed g(θ̂), the e.g. 68.3% confidence interval is the same as

the interval covered by θ̂obs ± σ̂θ̂.
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Statistical error & confidence interval
Classical confidence intervals

Assumptions:

An estimator for a parameter θ is based on
n observations θ̂(x1, ..., xn).

The value of the parameter is not known,
but the p.d.f. of the estimator under the
assumption of the true parameter value,
g(θ̂; θ) is known.

From g(θ̂; θ) one can determine uα and vβ
such that:

α = P (θ̂ ≥ uα(θ)) =

∫ ∞
uα(θ)

g(θ̂; θ)dθ̂ = 1−G(uα(θ); θ), (1)

β = P (θ̂ ≤ vβ(θ)) =

∫ vβ(θ)

−∞
g(θ̂; θ)dθ̂ = G(vβ(θ); θ), (2)

where G is the cumulative distribution of g(θ̂; θ).
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Statistical error & confidence belt
Classical confidence intervals

A hypothetical shape of uα(θ) and vβ(θ) as
a function of true value θ. −→
The region between the two curves is called
the confidence belt.

The probability for the estimator to be inside
the belt (regardless of the value of θ) is:

P (vβ(θ) ≤ θ̂ ≤ uα(θ)) = 1− α− β (3)

It is also useful to define:

a(θ̂) ≡ u−1
α (θ̂)

b(θ̂) ≡ v−1
β (θ̂)

(4)

hence : P (a(θ̂) ≤ θ ≤ b(θ̂)) = 1− α− β (5)
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Confidence level & confidence interval
Classical confidence intervals

The interval [a(θ̂obs), b(θ̂obs)] is called a
confidence interval at a confidence level
or confidence probability of 1− α− β.

Interpretation: If a similar experiment is
repeated multiple times, the interval [a, b]
will cover θtrue with the probability
1− α− β.

One often chooses α = β = γ/2, a so called
central confidence interval with
probability 1− γ.

One also defines one-sided confidence
limit such that a represents a lower limit on
the parameter θ (θ ≥ a with probability
1− α). Similarly, b represents an upper limit
(θ ≤ b with probability 1− β).
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Confidence limits
Classical confidence intervals

Taking θ̂obs = uα(a) = vβ(b), equations 1 and 2
become:

α =

∫ ∞
θ̂obs

g(θ̂; a)dθ̂ = 1−G(θ̂obs; a), (6)

β =

∫ θ̂obs

−∞
g(θ̂; b)dθ̂ = G(θ̂obs; b). (7)

This is closely connected to goodness-of-fit
introduced in lecture 4. Here, P -value is set to α
and a is a random variable that depends on data.

The major difficulty of constructing confidence intervals is that the p.d.f. of
the estimator g(θ̂; θ) (or G(θ̂; θ)) has to be known.

In practice, the p.d.f. is often Gaussian or approximately Gaussian which
allows for easy construction of the intervals.
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Gaussian distributed estimator
Confidence interval

If θ̂ is Gaussian distributed with mean θ and standard
deviation σθ̂, we have:

G(θ̂; θ, σθ̂) =

∫ θ̂

−∞

1√
2πσ2

θ̂

exp

(
−(θ̂′ − θ)2

2σ2
θ̂

)
dθ̂′ =

=Φ

(
θ̂ − θ
σθ̂

)
.

(8)

This gives the solution to Eqs. 6 and 7:

a = θ̂obs − σθ̂Φ
−1(1− α),

b = θ̂obs + σθ̂Φ
−1(1− β).

(9)

Here, Φ−1 is the inverse error function, i.e. the quantile
of the standard Gaussian (normal).

single-sided intervals:

Φ−1(1− α) 1− α
1.0 0.8413
1.282 0.90
1.645 0.95
2.0 0.9772
2.326 0.99
3.0 0.9987

central intervals:

Φ−1(1− γ/2) 1− γ
1.0 0.6827
1.645 0.90
1.960 0.95
2.0 0.9544
2.576 0.99
3.0 0.9973
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Poisson distribution
Confidence interval

Poisson estimator takes discrete (integer)
values while the mean ν is a real positive:

f(n; ν) =
νn

n!
e
−ν
, E[n] = ν, V [n] = ν. (10)

We can formulate the condition for
confidence interval [a, b]:

α = P (ν̂ ≥ ν̂obs; a) = 1−
nobs−1∑
n=0

an

n!
e
−a
, (11)

β = P (ν̂ ≤ ν̂obs; b) =

nobs∑
n=0

bn

n!
e
−b
. (12)

The limits defined this way are conservative:

P (ν ≥ a) ≥ 1− α
P (ν ≤ b) ≥ 1− β
P (a ≤ ν ≤ b) ≥ 1− α− β

(13)

Note: A lower limit a cannot be determined
for nobs = 0. The upper one is defined by:

β =

0∑
n=0

bne−b

n!
= e
−b

=⇒ b = − ln(β)

E.g.: − ln(0.05) ≈ 3, so if nobs = 0,
the 95% upper limit on the mean is 3.

lower limit a upper limit b
nobs α = 0.1 α = 0.05 α = 0.01 β = 0.1 β = 0.05 β = 0.01

0 – – – 2.30 3.00 4.61
1 0.105 0.051 0.010 3.89 4.74 6.64
2 0.532 0.355 0.149 5.32 6.30 8.41
3 1.10 0.818 0.436 6.68 7.75 10.04
4 1.74 1.37 0.832 7.99 9.15 11.60
5 2.43 1.97 1.28 9.27 10.51 13.11
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Correlation coefficient
Confidence interval

Let’s recall from lecture 4 estimator for the covariance:

V̂xy =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ) =
n

n− 1
(xy − x̄ȳ) (14)

Hence, the (asymptotically unbiased) estimator for correlation coefficient:

r =
V̂xy
sxsy

=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

j=1(xj − x̄)2
∑n
k=1(yk − ȳ)2

=
xy − x̄ȳ√

(x2 − x̄2)(y2 − ȳ2)
(15)

Issues when dealing with small statistics:

The form of g(r; ρ, n) is generally non-Gaussian and the solution (inversion of
cumulative G) cannot be analytically found.

The standard deviation and asymmetry depends on ρ.

The estimator r is biased (although both V and s are not):

E[r] = ρ− ρ(1− ρ2)

2n
+O(1/n2), V [r] =

1

n
(1− ρ2)2 +O(1/n2).
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Correlation coefficient
Confidence interval

Let us assume an experiment results in N = 10
events yielding pairs on random variables. We
have estimated the correlation to be r = 0.75.
What is the significance of this result?

The naive solution: σ̂r = 1−r2√
n

= 0.138, so we get the 99% confidence

interval of [0.39, 1.11]. “The probability of ρ = 0 is 6× 10−6. We have
confirmed a positive correlation!”
Really, have we?

The correct reasoning: Assume the ρ = 0 hypothesis. What is the 99%
confidence interval? σ̂0 = 0.32. The corresponding 99% confidence interval is
[-0.81, 0.81]. Actually, the probability of obtaining r = 0.75 or larger is 1.8%!
We have not demonstrated the correlation at the claimed confidence level !!!
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Correlation coefficient
Confidence interval

Let us assume an experiment results in N = 20
events yielding pairs on random variables. We
have estimated the correlation to be r = 0.5.
What is the significance of this result?

The naive solution: σ̂r = 1−r2√
n

= 0.168, so we get the 99% confidence

interval of [0.07, 0.93]. “The probability of ρ = 0 is less than 0.5% . We
have a strong evidence of a positive correlation!”
Really, have we?

The correct reasoning: Assume the ρ = 0 hypothesis. What is the 99%
confidence interval? σ̂0 = 0.223. The corresponding 99% confidence interval
is [-0.58, 0.58]. Actually, the probability of obtaining r = 0.5 or larger is
2.5%!
We have not demonstrated the correlation at the claimed confidence level !!!
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Correlation coefficient
Confidence interval

An approximate solution can be obtained using
variable transformation.
It has been shown by Fisher that the p.d.f. of the
statistic

z = tanh−1 r =
1

2
log

1 + r

1− r
approaches the Gaussian limit much more quickly as
a function of n.

The expectation value and variation are approximately:

E[z] ' 1

2
log

1 + ρ

1− ρ +
ρ

2(n− 1)
, V [z] ' 1

n− 3
(no z dependence).

The approximate solution: z = 0.549 and σ̂z = 0.243, so we get the 99%
confidence interval of [-0.075, 1.174] for z.

The inverse transformation gives the 99% confidence interval for r of [-0.075,
0.826].

Or the probability of obtaining r = 0.5 or larger is 2.3% (in decent agreement with
the exact calculation).
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Confidence intervals using log-likelihood or χ2

Even for non-Gaussian estimators, the interval can be determined approximately
using profile of the logL or χ2 functions. As discussed in Lecture 5, from Taylor
expansion and assuming the RCF bound we get:

logL(θ+d−c) = logLmax−
N2

2
, or χ2(θ+d−c) = χ2

min+N2, (16)

where the central confidence interval is given by [a, b] = [θ̂ − c, θ̂ + d] and
N = Φ−1(1− γ/2) is the quantile of the standard Gaussian (normal dist.)
corresponding to the desired confidence level 1− γ.
Note: With the assumption of Gaussian errors one has logL = −χ2/2.

Recall our example of
τ̂ = 1

n

∑
i ti.

The asymmetry
justifies to quote
τ̂ = 4.82+1.35

−0.95 95%C̃L,
rather than
τ̂ = 4.82± 1.08:
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Multidimensional confidence intervals

In case of estimators of more than one parameter
θ = (θ1, ..., θn), the confidence interval is replaced by the
confidence region. In the large sample limit the joint
p.d.f. becomes:

g(θ̂|θ) =
1

(2π)n/2|V |1/2
exp

[
−1

2
Q(θ̂,θ)

]
,

with Q(θ̂,θ) = (θ̂ − θ)TV −1(θ̂ − θ).

(17)

The hyperellipsoids in the θ̂-space delimit confidence
regions. Due to the symmetry between θ̂ and θ, the
confidence region looks the same no matter which of the
two is regarded constant.
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Multidimensional confidence intervals
For sufficiently large samples (n-dimensional Gaussian) the quantity Q(θ̂,θ)
is distributed according to χ2 with n DoF’s. The confidence region with CL
1− γ is given by:

Q(θ̂,θ) ≤ Qγ = F−1(1− γ;n),

∫ Qγ

0

f(z;n)dz = 1− γ. (18)

Qγ is the quantile of order 1− γ of the χ2 distribution.

The confidence region boudaries can be constructed finding values of θ
satisfying:

logL(θ) = logLmax −
Qγ
2
. (19)

Qγ
1− γ n = 1 n = 2 n = 3 n = 4 n = 5

0.693 1.00 2.30 3.53 4.72 5.89
0.90 2.71 4.61 6.25 7.78 9.24
0.95 3.84 5.99 7.82 9.49 11.1
0.99 6.63 9.21 11.3 13.3 15.1

Pawel Brückman Statistics in Data Analysis April 16, 2025 28 / 46



Limits near a physical boundary

It often happens that an estimator can attain values
outside a physically allowed region (e.g. negative
quantity of a sought for admixture).

This is typical when the estimator results from
subtracting two random variables: θ̂ = x− y.

If both x and y are Gaussian distributed, so is θ̂, with
expectation θ = µx − µy and variance σ2

θ̂
= σ2

x + σ2
y.

We can end up with not only the estimated value
outside of the physical bound but even the upper
limit may be outside.
Imagine e.g. m < −3mg @ 95% CL – not a very
useful result /).
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Limits near a physical boundary
Imagine e.g. our result must not be negative.
There are three most common solutions to this problem:

1 Classical: take as is despite disturbing interpretation (mathematically correct).

2 Shift the observation to the boundary of allowed interval:

θup = max(θ̂obs, 0) + σθ̂Φ
−1(1− β). (20)

Overconservative, as 1− β probability no longer applies. On the other hand, limit is
never smaller than the experimental resolution.

3 Use the Bayesian posterior p.d.f.:

p(θ|x) =
L(x|θ)π(θ)∫
L(x|θ′)π(θ′)dθ′

, 1− β =

∫ θup

−∞
p(θ|x)dθ =

∫ θup
−∞ L(x|θ)π(θ)dθ∫∞
−∞ L(x|θ)π(θ)dθ

(21)

What remains undefined is the choice of prior π(θ). The simplest choice is a flat
prior:

π(θ) =

{
0 θ < 0
1 θ ≥ 0
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Limit on Poisson signal over background
n = ns + nb. This is a special example of the previous case.

f(n; νs, νb) =
(νs + νb)

n

n!
e−(νs+νb), (22)

with the unbiased ML estimator for νs:

ν̂s = n− νb, E[n] = νs + νb. (23)

ν̂s and its variance must be reported if results of multiple experiments are to be
combined.

Classical limit is not recommended when νb is large compared to νs. For seting
limits, the Bayesian approach with flat prior is usually used:

1− β =

∫ νup
s

0
L(nobs|νs)dνs∫∞

0
L(nobs|νs)dνs

=

∫ νup
s

0
(νs + νb)

n
obse

−(νs+νb)dνs∫∞
0

(νs + νb)nobse
−(νs+νb)dνs

(24)

which, for no background is equivalent to Eq. 12 and asymptotically decrease to
− lnβ for growing νb.
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Limit from the functional shape
x is a random variable with different p.d.f.’s fs(x) and fb(x), respectivly.

f(x; νs, νb) =
νsfs(x) + νbfb(x)

νs + νb
. (25)

We can formulate the fit in two different ways:

1 The extended ML using:

L(νs) =
(νs + νb)

n

n!
e−(νs+νb)

n∏
i=1

νsfs(xi) + νbfb(xi)

νs + νb

=⇒ logL(νs) = −νs +
n∑
i=1

ln (νsfs(xi) + νbfb(xi))

(26)

2 The normal ML using:

L(νs) =
n∏
i=1

νsfs(xi) + νbfb(xi)

νs + νb
=⇒ logL(νs) =

n∑
i=1

ln

(
νsfs(xi) + νbfb(xi)

νs + νb

)
(27)

NOTE: The latter was used in our homework exercise!
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Confidence intervals with binned data and systematic
uncertainties
Consider a typical situation when experiment results in a histogram
n = (n1, ..., nN ), where contents of a bin depends on existence of the sought for
signal (with signal strength µ) and additionally on a set of tunable experimental or
theoretical nuisance parameters θ:

E[n1] = µsi(θ) + bi(θ) (28)

The Likelihood function is given by:

L(µ,θ) =

N∏
i=1

(µsi + bi)
ni

ni!
e−(µsi+bi). (29)

To test a hypothesized value of µ we consider the profile likelihood ratio:

λ(µ) =
L(µ,

ˆ̂
θ)

L(µ̂, θ̂)
, where

ˆ̂
θ maximizes L for a given µ

µ̂, θ̂ realise the absolute maximum of L
(30)
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Profile Likelihood Ratio

The maximum of profile likelihood ratio (PLR) should be a near-optimal estimator
for µ with nuisance parameters θ.
A monotonic function of PLR provides an equally good test statistic:

qµ = −2 log λ(µ). (31)

Large qµ means increasing
incompatibility between the data and
hypothesis (µ), therefore p-value for an
observed qµ,obs is:

pµ =

∫ ∞
qµ,obs

f(qµ|µ)dqµ. (32)

NOTE: Significance: Z = Φ−1(1− p), where Φ is the cumulative of normal dist.
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Profile Likelihood Ratio
Wald approximation

In practice, we need a decent approximation of the qµ p.d.f. in order to calculate
quantiles and calculate p-values.
The desired distribution f(qµ | µ′) can be found using a result due to A. Wald
(1943), who showed that for the case of a single parameter of interest:

qµ = −2 log λ(µ) =
(µ̂− µ)2

σ2
+O(1/

√
N), (33)

with µ̂ ∼ Gaussian(µ′, σ), i.e., E[µ̂] = µ′. Here, σ can be estimated e.g. from the
fit Hessian thanks to RCF relation:(

V̂ −1
)
i,j

= −∂
2logL

∂θi∂θj

∣∣∣∣∣
θ=θ̂

(34)

The p.d.f. is a noncentral χ2 distribution (noncentrality param.: Λ = (µ−µ′)2
σ2 ):

f(qµ|µ′) =
1

2
√
qµ

1√
2π

[
exp

(
−1

2
(
√
qµ +

√
Λ)2
)

+ exp

(
−1

2
(
√
qµ −

√
Λ)2
)]

. (35)

N.b.: For µ = µ′, qµ approaches a χ2
1 distribution, as shown by S. Wilks (1938).
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Profile Likelihood Ratio
The sensitivity

If we want to assess sensitivity of our experiment, we need to find value of µ′

which gives (on average) required p-value for our null hypothesis µ.

The Asimov data set can be
used to assess the median value
of qµ statistic. It is defined by
all bins content equal to their
expectation values:

µ̂ = µ′, θ̂ = θ. (36)

NOTE: What we are trying to estimate here is how incompatible is our assumed
signal hypothesis µ′ with the null hypothesis (µ). We settle on the value witch is
equal to the required p-value (or equivalently significance).
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Profile Likelihood Ratio
Base example (signal significance)

Let us revisit the fit of Gaussian signal over exponential background (last HW).
Let us assume our parameter of interest (PoI) is still the signal yield, while the
background yield and its shape (parameterised by τ) are nuisance parameters.
Let us check the asymptotic formula for qµ statistic p.d.f. and extract the signal
significance. We run 5000 toys...

fitted signal strength µ fitted uncertainty on µ, σ(µ)
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Profile Likelihood Ratio
Base example (signal significance)

Let us revisit the fit of Gaussian signal over exponential background (last HW).
Let us assume our parameter of interest (PoI) is still the signal yield, while the
background yield and its shape (parameterised by τ) are nuisance parameters.
Let us check the asymptotic formula for qµ statistic p.d.f. and extract the signal
significance. We run 5000 toys...

f(q0|µ = 0), Λ = 0
f(q0|µ = 20), σ ' 10, Λ ' 4

Asimov: qµ=4.4, p-value=0.036 Data: qµ=8.1, p-value=0.004
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Profile Likelihood Ratio
Discovery example (signal significance)

We are not only interested in the
median. We always want to know
how much statistical variation to
expect from a real data set. But we
have the full f(q0|µ). We can get
any desired quantiles.

In particular, values of µ for which
median-1σ and median+1σ happen
at the Asimov (or fitted) qµ define
the ±1σ uncertainty band.

f(q0|µ = 29), σ ' 10, Λ ' 9

The Profile Likelihood Ratio fit can be extended to several fitting areas,
including e.g. control regions constraining certain nuisance parameters, etc.
Likelihood is a product of individual ones.

Gaussian constraints on the nuisance parameters are typically present in the
PLR as well.
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Profile Likelihood Ratio
Discovery vs Upper Limit

The so far discussed statistic allows for both up and down fluctuations resulting in
µ̂ going beyond its physically meaningful boubnds.
This is why modified statistics are commonly used:

DISCOVERY
Try to reject background-only (µ = 0)
hypothesis using:

q0 =

{
−2 log λ(0) µ̂ ≥ 0
0 µ̂ < 0

(37)

UPPER LIMIT
For purposes of setting an upper limit on
µ use:

qµ =

{
−2 log λ(0) µ̂ ≤ µ
0 µ̂ > µ

(38)

NOTE: Essentially, we are probing only single sided departures from the null
hypothesis. P.d.f.’s of concerned statistics are slightly modified but still
analytically defined and allow for making numerical predictions.
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Profile Likelihood Ratio
Limit on the observation - example

Distribution of upper limit on µ
±1σ (green) and ±2σ (yellow) bands
from MC; Vertical lines from asymptotic
formulae

Limit on µ versus peak position
This is the famous “brasilian plot”

credit: G. Cowan

This and much, much more on PLR and asymptotic formulae hypothesis tests can
be found here.
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Thank you
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Back-up
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Profile Likelihood Ratio
Wald approximation

qµ = −2 log λ(µ) =
(µ̂− µ)2

σ2
+O(1/

√
N), (39)

The p.d.f. is a noncentral χ2 distribution (noncentrality param.: Λ = (µ−µ′)2
σ2 ):

f(qµ|µ′) =
1

2
√
qµ

1√
2π

[
exp

(
−1

2
(
√
qµ +

√
Λ)2
)

+ exp

(
−1

2
(
√
qµ −

√
Λ)2
)]

. (40)

N.b.: For µ = µ′, qµ approaches a χ2
1 distribution, as shown by S. Wilks (1938).

f(qµ|µ) =
1
√
qµ

1√
2π

exp−qµ/2 (41)

The cumulative distribution of qµ assuming µ′ is:

F (qµ|µ′) = Φ
(√

qµ +
√

Λ
)

+ Φ
(√

qµ −
√

Λ
)
− 1. (42)
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Profile Likelihood Ratio
Discovery

Try to reject background-only (µ = 0) hypothesis using:

q0 =

{
−2 log λ(0) µ̂ ≥ 0
0 µ̂ < 0

(43)

Assuming the validity of the Wald approximation, one gets:

f(q0|µ′) =

(
1− Φ

µ′

σ

)
δ(q0) +

1

2
√
q0

1√
2π

exp

[
−1

2

(
√
q0 −

µ′

σ

)2
]
. (44)

The corresponding cumulative distribution is found to be:

F (q0|µ′) = Φ

(
√
q0 −

µ′

σ

)
(45)

The p-value of the hypothesis µ = 0, p0, is obtained from these distributions by using
µ′ = 0. For the significance one finds the simple formula:

Z0 = Φ−1(1− p0) =
√
q0 (46)

Pawel Brückman Statistics in Data Analysis April 16, 2025 45 / 46



Profile Likelihood Ratio
Upper limit

For purposes of setting an upper limit on µ use:

qµ =

{
−2 log λ(0) µ̂ ≤ µ
0 µ̂ > µ

(47)

Assuming the validity of the Wald approximation, one gets:

f(qµ|µ′) = Φ

(
µ′ − µ
σ

)
δ(qµ) +

1

2
√
qµ

1√
2π

exp

[
−1

2

(
√
qµ −

µ′ − µ
σ

)2
]
. (48)

The corresponding cumulative distribution is found to be:

F (qµ|µ′) = Φ

(
√
qµ −

µ′ − µ
σ

)
(49)

The p-value of the hypothesis µ, pµ, is obtained from these distributions by using
µ′ = 0. For the significance one finds the simple formula:

Zµ = Φ−1(1− pµ) =
√
qµ (50)
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