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Question from the previous lecture

Suppose two independent measurements of the same quantity gave the
following results:

r1+o1 and 29 too

Take the weighted mean to be & = wz; + (1 — w)zo. Find the w which
minimizes the error on the mean, hence provide expressions for the weighted
mean Z and its variance o2,

Solution to be sent to me before the next lecture
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Solution
We have to express the variance of the weighted mean
Tz =wzx1 + (1 —w)xs
using the recipe for error propagation:

_ A oz \°
Var(z) = (6@) o} + 81‘2) o2

=w?o? 4+ (1 —w)?o3

and minimise it w.r.t. the weight w.

OVar(z)
—— =2wo} —2(1 —w)os =0
aw 1 ( ) 2
o3
— W= 2
o] + 03
Hence we get:
2 2 2 2
_ o521 + 07X _ 070
T = % and Var(z) = 21722
o1+ 03 o1 + 03
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Boost transformation

NOT a unitary transformation!

1000/

108,
2
vV = ( [ p0'120'2 ) 75
po102 o5
(1) s
A= cosh@ sinh 6
- sinh®  cosh@ >
(2
x _ —x '
sinh(z) = % 3)
xT —x
cosh(z) = % (4)
NOTE: Correlation is introduced

starting from uncorrelated S0 =i B ES o 25 50 75 E 0 500 750 1000
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Accidents happen...

Exponential distribution

m Imagine a fleet of governmental limousines circulating
daily. For any of them there is a probability A to be
crashed in an accident in a day. We start with Ny
limousines. What is the time p.d.f. of the accidents?

m For many circulating cars, accident rate is simply proportional to their

number:

dN dN

—~ — _)\N — = = )\dt

a- W 7 5 //
AN (t

InN = -X+C = N(t)=Nye ™

) _ ¢
dt = /\No@ (5)

...s0 we observe an exponential decay of the fleet.
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Accidents happen...

Exponential distribution

m Now consider just a single limousine of the PM. What is the
time p.d.f. for its accident?
Let t1,5 (half-life) be the time of 50% survival probability:

Fi(ti2) = (1 —€)" =0.5, nd=tys, ké=t, 0 isan infinitesimal time interval.
In(0.5)  —In(0.5)(1 —¢) =0 In(2)

"= In(1—¢) € €
k %t L~ 1n(2) . 3 —a
Fit)y=1-¢g)"=(1—¢)° "1/2 =|lim(l—¢)s =e =
e—=0
——t In(2 ——t _In(2
=e "1/2 @ = F.(t)=1-¢ "1/2 @ (6)

m F, is the cumulative accident probability. Hence the the p.d.f.:

1 _¢ . 3
B =Ft) = —e™7, with 7= 72~ 144ty (7)
E[t] = 7 = mean lifetime,  V[t] =72,  show these! (8)
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Exponential distribution

f(t; T)

1

all

Y N
il

& :
0 1/2 T ¢

You are most likely to damage a brand new limousine!!!

Pawel Briickman Statistics in Data Analysis March 19, 2025 7/40



Exponential distribution

fit; T)

[™fitydx = 0.5 Faltlto) = fa(8)/ Fa(to) =
0 .
ER-—o—=== %6_5/6_7 =
% _________ %eit:—to :fa(t—to)‘

1
1
1
1
1
1
}
T

0 ti2

Do not be fooled! Probability of crashing a limo any day remains constant
provided it has survied this far (conditional probability!).

[} [ =
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Mean of a random variable ensamble

Central Limit Theorem

Imagine a measurement being a sum of of many n independent ones, or an
average of n random numbers drawn from an arbitrary distribution (sampling
dlstrlbutlon

pa nas pat
K /\ /\,14 Aﬂ&
W M W M W
pa na pat

=128

The mean < x > converges on the initial distribution mean while the shape tends
to a...

...Gaussian with ever decreasing width as n .
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Mean of a random variable ensamble

Central Limit Theorem

Ok, that was a well behaved distribution. Let’s try something a bit less “gaussian”
to start with:

Pt Pt Pt Pt

n=16 n=32 n=64 n=128

The mean < x > converges on the initial distribution mean while the shape tends
to a...
...Gaussian with ever decreasing width as n .
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Central Limit Theorem

pdf.

Mean of a random variable ensamble

Pt

Ok, that was not austere enough. Let's try being bolder:

Pt

n=16

n=32

to a...

n=64

Pawel Briickman

n=128
The mean < x > converges on the initial distribution mean while the shape tends
...Gaussian with ever decreasing width as n .
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Mean of a random variable ensamble
Central Limit Theorem

Pt

And again. Something manifestly non-Gaussian:

Pt

n=32

to a...

n=128

...Gaussian with ever decreasing width as n .

Pawel Briickman

Statistics in Data Analysis

The mean < x > converges on the initial distribution mean while the shape tends




Mean of a random variable ensamble
Central Limit Theorem

Finally, give up the symmetry:

n=1 n=2 n=4 n=8
n=16 n=32 n=64 n=128
G 3 [ x G

The mean < x > converges on the initial distribution mean while the shape tends
to a...
...Gaussian with ever decreasing width as n .

=] 5 = E E HAw
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Central Limit Theorem

Sum of n random variables drawn from a probability distribution function of a
finite variance, o2, tends to be Gaussian distributed about the expectation value
for the sum, with variance no?2.

Consequently, the mean of the same n random values will have the expectation
value of the initial p.d.f. and varaince %02.

Ex: What is the probability that the mean salary of 50 randomly chosen emploies
of our institute exceeds 6000 pIn?

NOTE: We don't need to know the actual distribution of salaries in the institute.

All we need to know is the average and the varaiance (or standard dev.).

Careful: The finite variance is an important (and the only) requirement. A notable
exception is the Cauchy (Breit-Wigner) distribution describing resonant states:

1 1
w14 22

fz) =

You can trivially show that the E[z?] is divergent!
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a single limo

Back to fleet of limousines...

2 4 6
limo lifetime

Briickman

3
average lifetime of a limo (sample of 1)
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2 limo's

Back to fleet of limousines...

2 4 6
limo lifetime

3
average lifetime of a limo (sample of 2)
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5 limo’s

Back to fleet of limousines...

2

4 6
limo lifetime

Briickman

3
average lifetime of a limo (sample of 5)

5
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10 limo's

Back to fleet of limousines...

0=0.43

2 4 6
limo lifetime

1.0

15 2.0
average lifetime of a limo (sample of 10)
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Back to fleet of limousines...
50 limo’s

0=0.19

2 4
00

6
limo lifetime

0.5

1.0

15 X
average lifetime of a limo (sample of 50)
Briickman

2.0

2.5

3.0
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Back to fleet of limousines...
100 limo's

0=0.14
=15
o 2 4 6
limo lifetime
00 05 10 20 25 30

average lifetime of a limo (sample of 100)
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Gaussian distribution

The Gaussian p.d.f. of the continuous random variable = with

—00 < x < oo is defined by:
1 —(z—p)?
_— 9
oo (< ©)

The term normal distribution is used when =0 & o =1.

fla;p,0%) =

Gaussian p.d.f.: normalisation, mean & variance

/_Zf(ft;uyog) =1 (10)
Elz] = /_o; x\/zi_7 exp (_(2;2“)2> de = p, (11)
V[m]z/i(x—u 2\/#&@(_(2;2#)2)(&::02. (12)

Can you prove the above?
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Gaussian distribution

fix)/F(x)
1.0 A
(x—p)?
fix) =L _ e
0.8 - V 2no?
erf(x) =
0.6

0.4 1

0.2 1

0.0

+o

ol AN

I” fiy)ay

X

The cumulative distribution of the Gaussian p.d.f. is not analitically calculable.
Nonetheless, quantiles of the normal distribution are of paramount importance for

statistics!
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Gaussian distribution

Quantiles

fix) p.d.f.

34.1% 34.1%

0.1% 0.1%

—30 —-20 —o i +0 +20 +30
X

Standard deviation (o) of a Gaussian distribution has central importance for error
analysis:
w+tlo:68.27%, p+20:9545%, p=£30:99.73%.
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Characteristic function

Fourier Transform of a p.d.f.: the characteristic function

¢(k) = E[e™*] = /_OO dz f(z)e*® = f(z)= % /_OO dk p(k)e~ e

(13)
m m'th algebraic moment of f(x) is obtained by simple diferentiation of ¢(k):
(i o), = (m g [ do st -
= [ doam (@) = Bl (14)

m Let z =), x;, where xq, ..., 2, are n independent random variables:

b= (k) :/.../e“@iwifl(xl)...fn(xn)dxl...da:n = (15)
= [ pndan [ @ gy dn, = on(0)0uR). (16)
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Central Limit Theorem

Derivation of...

Let z = ﬁ(% + .+ @n) = 30, Tk For asingle variable u = 2/\/n, the
characteristic function is given by:

bu(k) = /Oo du f(u)e*™ =1+ iEulk — %E[uz]kQ + O(k?) =

— 00

17
L+ iBla] S Ll LA "
= 1 —_— = —_—
Vn n N
Without any loss of generality, we can assume that E[z] = 0 and E[2?] = o2
(otherwise use T = x — Elx]):
. T . o k2 k3
i 0.0 = tim T 6,00 = tim TT (1~ 2l + 00 =
=1 =1 (18)
~ lim (1 - "2]‘32)” ~o%k? /2
n—00 2n
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Central Limit Theorem

.. and the Gaussian distribution

So far we have found the characteristic function of the z. The p.d.f. is given by
its inverse Fourier transform:

f:(2) = o [00 dk ¢ (k)e™™** = > [m dk =0k /2,—ikz _

L[ gy em(okivaris/@va) —2ieet) _ L et (1)

B 21 — 0 \V2ro

We have derived the Central Limit Theorem

The sum of independent random variables, sampled from the same
distribution, will tend towards a Gaussian distribution, independently of
the initial distribution.

Note: In the proof we used the strong assumption that all moments were finite. In
fact, it is sufficient that the second moment (o?) is finite, but we shall leave it
without a proof. This holds for most well-behaved p.d.f.'s, but not all!
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Central Limit Theorem

concequences

For the above derivation we used particularly normalised sum (z = ", =)

i=1Vn
which led to the variance of the z being equal to the variance of z;.
It is easy to see that:

For the algebraic sum z = Z;;l x; we obtain o, = y/no, or more generally
ol =305 (<z>=30, <xj>).

For the algebraic mean z = %22:1 x; we obtain 0, = ﬁa, or more
generally 02 = L 37" 0%, (<z>=L)0, <aj>).

What does it mean?

m If we estimate the mean from a sample, we will always tend towards
the true mean,

m The uncertainty in our estimate of the mean will decrease as the
sample gets bigger.
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Gaussian distribution
... generalisation

Let x = (z1,2,...,Z,) be a n-dimensional sample space.

n-dimensional Gaussian distribution

i) = e (~5 0= TV - ) (20

|V| is the determinant of V.

V is the covariance matrix of x and V! is its inverse, called the weight matrix

What does the above give for independent random variables?

=] F = £ DA
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Gaussian distribution

... 2D case

l0'1:2
I02:3

mp=07
2
V= o7 pPo102
pPo102 O'%
1 =P
vl 1 o? o102
=M\ 75

1
flz1,x25 p1, p2,01,02,p) = ————————
(@1, 223 b1, p2, 01, 02, ZWalagm
( 1
exp

o () () e (5 (552)]) e

=] F DA
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Spread of a pandemic

multiplicative Gaussian

Average transmission rate: 1.75 with standard deviation of 0.2.
Number of infected after 20 epochs:

0 1 2 3
transmission rate

25000 50000 75000 100000 125000

150000 175000 200000
contaminations after 20 epochs
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Spread of a pandemic

multiplicative Gaussian

Average transmission rate: 2.0 with standard deviation of 0.2.
Number of infected after 20 epochs:

0 1 2 3
transmission rate

2 3
contaminations after 20 epochs

u]

g

|

I
L]
S
pe)
i)

Briickman
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Spread of a pandemic

multiplicative Gaussian

Average transmission rate: 1.75 with standard deviation of 0.05.
Number of infected after 20 epochs:

0 1 2 3
transmission rate

0 25000 50000 75000 100000 125000 150000 175000 200000
contaminations after 20 epochs
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Log-normal distribution

Let y be a Gaussian-distributed random variable with mean and variance i, o2
What is the p.d.f. of x = ¢e¥?

B N —(Inz — p)?\ d(lnx)
o10) = )i o) | 2| = s (T ) ARD o)
log-normal p.d.f.
—(Inz — p)?
fasino®) = = exp (“20“)) (23)
Elz] = ettt (24)
Via] = e+’ [eoz - 1} (25)
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BESSS——.
Log-normal distribution
f(x)/F(x)
1.0 A

0.8 1

0.6

0.4

F(x) = erflin(x)) = [

In(x) fw W
1
= 2 d
- \/21'((72 Y
—(In(x) —p)?
e 27
0.2 A
1
1
0.0 L1
S g
x X
Sy
e ¢
<1n<z> w? —(y=m)?
OX le dz = | In(z) =y, Ldx = dy’ lno(ox) e 202
—(n(z)—p)? —(y=m)?
JTateT 207 do= [ e 20t evdy = [
mode: el 7

dy = V2ra2erf (In(X)
—(y—(nto?))?
e 2
median: et

)
2 2
20 ertde dy:v2ﬂ'aze“+%g
1 2
, Dl mean: et 29 F(X)=erf(In(X))
= = z 9ace



Log-normal distribution

multiplicative factors

fix; u, 02) G0 2
fix)=——x€ 2
V2no?
u=0,0=1.0
u=1,0=0.5
u=1,0=1.0
u=2,0=1.0
——————
0 2 4 6 8 10

It becomes apparent that if z = H?Zl ;= eXi=1Y | the product of many random
variables tends to a log-normal distribution with p = 3", y1j and 0% = 377, 07.

Here, pj = E[lnz] and o7 = E[n*z] — E[lnz]?. Certainly, V;z; > 0.
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Log-normal distribution

fix; u, 0?) 1) 11 —neo-w?
= — 202
\/2n02x
u=0,0=1.0
u=1,0=0.>5
u=1,0=1.0
u=1,0=15
u=2,0=1.0

-2 -1 0 1
10 10 10 10y

In logarythmic scale, log-norm distributions appears as Gaussian (normal).

—(In(z)—p)? — (w2 —2py+u?)—202y 2 —(y—(n—o?)?
Y= 1n(m>; %e 252 —e 202 — g HT207, 202

[} [ =
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BESSS——.
Log-normal distribution
Quantiles
fix) p.d.f.

fix) =

11,
Vano? X

—(In(x) - p)?

20?
34.1%

eu—30 eH-o

eH

eH+o
et x [e? 1 68.27%,

21%
eu+20 ey+30
X
et x [e?7 :95.45%, et x [e37 :99.73%.
SRT- IR Dac




x? test statistic

Let = be a Gaussian-distributed randon variable with known p and . We can

make a simple linear transformation of this variable such, that the distribution
becomes so-called standard normal (u =0, o = 1):

flayp, o) =

N2 _ .2
\/21T76Xp< (3320210 ), w%z:xgu, f(z;O,l):\/%exp( 5 ) (26)
What is the distribution of u = 22 (E[u] = E[2?]

U =V =1)?
) =2/ | 7| = —=—=ew (-3) 27
Recall: z € (—00,00) — u = 22 (0, 00)
X3: mean & variance
Elu] = /000 ux3(u)du =1 (28)
Viu] = /OOO u?x3 (u)du = 2 (29)
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x? test statistic

X7 can be extended to distribution of two independent normal-distributed random
variables u = z? + 22 by means of Fourier convolution. The operation executed
. . 2 .
recurrently provides the expression for any value of n (u = >, 27):
1 n U
2 n_q
u) = —& U2 ex (—7) 30
X (1) 25T (2) p (=3 (30)

Recall: T(n) = (n—1)!, T(2) = [y " e “dx

X2: mean & variance
Elu] = / ux?(u)du =n (31)
0
Viu] = / u?x2 (u)du = 2n (32)
0

Note: x?2 distribution has only one parameter, n, called number of degrees of
freedom (nDoF).
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x? test statistic
nDoF=1

Briickman
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R
\? test statistic
nDoF=2

Pav
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R
\? test statistic
nDoF=3

Pav
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R
\? test statistic
nDoF=5
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R
\? test statistic
nDoF=10
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x? test statistic
nDoF=30
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x? test statistic
nDoF=50

Pav
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x? test statistic

general n-dimensional case

So far independence of the normal-distributed variables was as assumed. This can

be generalised to n-dimensional Gaussian distribution with an arbitrary covariance
matrix V.

Y 2-distributed n-dimensional Gaussian

z=(x—p)"'Vi(x—p) (33)

is a x2 random variable with n DoF’s.
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x? distribution

fi(x) X2 o
0.5 T k;Q
0.41 I Zj
0.3+ I Zig
0.24
0.1 S;
0.0

0o 1 2 3 4 5 6 7 87
The x? distribution approaches a Gaussian (recall CLT!) for k — oo. For practical
applications, it can be considered Gaussian for n > O(50) (u =k, o = v2k).

2772
Y(s,x) = [y t*"re7tdt

mode: k—2, median: ~ k(1 — 2)°, mean: k, F(X,k) = rey7 (5:2)
2
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Questions

Consider the exponential p.d.f.,

1

flz;T) = Zem /T, x> 0.
T

Show that the corresponding cumulative distribution is given by

F(z;7)=1—e"%/"

Show that the conditional probability to find a value z < z¢ + 2’ given that
x > x¢ is equal to the (unconditional) probability to find = less than 2/, i.e.

Pz < zg + 2’|z > x9) = P(z < 2').
Solutions to be sent to me before the next lecture
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Thank you

=] F = = DA
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Back-up

DA
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Fourier convolution - revisited
z=uxz+y, find f.(z) given fo y(z,v)

P(z<zl)—/z1 difo (k) =

/dy/m ydxfxyxy /dx/ bty D

joint p.d. f

fz(z) Ccllf = /:>o dzfr,y( y % ‘r) :[ dyfr,y( yay) (35)

Hence for independent variables ( fy ,(z,y) = fz(x) * f,(y) ) we obtain:

z =x + y : Fourier convolution

+00 +oo
f6)= [ g@ht-a)dz= [ " glz= iy (30

— 00 — 00
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Log-normal distribution

0.02
|

density
0.01
|

Gaussian p, 02 are additive, log-normal are multiplicative.
The log-normal distribution approaches a Gaussian for o — 0.
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