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Questions from the previous lecture

1 Using the Kolmogorov axioms, show that:

P (A ∪B) = P (A) + P (B)− P (A ∩B)

.

2 What is the standard deviation of the sample mean x̄, i.e. calculate
V ar〈x̄〉 ≡ 〈(x̄− µ)2〉.
(Hint: On the way, you’ll need to prove that 〈xixj〉i 6=j = µ2.)

Solutions to be sent to me before the next lecture
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Solutions
Show that: P (A ∪B) = P (A) + P (B)− P (A ∩B)

Using the Kolmogorov axioms, show that:

P (A ∪B) = P (A) + P (B)− P (A ∩B)

.
It is enough to note that:

A ∪B = A ∪ (Ā ∩B) and B = (A ∩B) ∪ (Ā ∩B)

and use the 2nd Kolmogorov’s axiom about probability of disjoint subsets twice:

P (A ∪B) = P (A ∪ (Ā ∩B) = P (A) + P (Ā ∩B)

P (B) = P ((A ∩B) ∪ (Ā ∩B)) = P (A ∩B) + P (Ā ∩B)

From where we get:

P (A ∪B) = P (A) + P (B)− P (A ∩B) ∴
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Solutions
What is the standard deviation of the sample mean x̄, i.e. calculate V ar(x̄) ≡ 〈(x̄− µ)2〉.

V ar(x̄) ≡ σ2
x̄ ≡ 〈(x̄− µ)2〉

= 〈( 1

n

∑
i

xi − µ)2〉

=
1

n2

∑
i

〈x2
i 〉+

1

n2

∑
i 6=j

〈xixj〉 − 2µ〈x̄〉+ µ2

=
1

n2
n〈x2〉+

n(n− 1)

n2
〈xixj〉i 6=j − 2µ〈x̄〉+ µ2

=
〈x2〉
n

+
n− 1

n
µ2 − µ2 =

〈x2〉 − µ2

n
=
σ2

n
∴

〈xixj〉i 6=j =

∫ ∫
xixjg(xi, xj)dxidxj =

∫ ∫
xixjf(xi)f(xj)dxidxj

=

(∫
xf(x)dx

)2

= µ2 ∴ also: 〈x2〉 = σ2 + µ2
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Expectation value for the variance estimators s2 and S2

E[s2] =
1

n− 1

∑
i

E[(xi − x̄)2] =
1

n− 1

∑
i

E[x2i − 2xix̄+ x̄2] =

=
1

n− 1

∑
i

(
E[x2i ]−

2

n
E

[
xi
∑
j

xj

]
+

1

n2
E

[∑
k

xk
∑
j

xj

])
=

=
1

n− 1

∑
i

E[x2i ]−
2

n

∑
j

E[xixj ] +
1

n2

∑
k,j

E[xkxj ]

 =

=∗
1

n− 1

∑
i

(
µ2 + σ2 − 2

n
(µ2 + σ2 + (n− 1)µ2) +

1

n2

[
(n2 − n)µ2 + n(µ2 + σ2)

])
=

=
1

n− 1

∑
i

(
0× µ2 +

n− 1

n
σ2

)
=

1

n− 1
n
n− 1

n
σ2 = σ2, ∴ (1)

E[S2] =
1

n

∑
i

E[(xi − µ)2] =
1

n

∑
i

E[x2i − 2xiµ+ µ2] =∗
1

n

∑
i

(
µ2 + σ2 − 2µ2 + µ2) =

=
1

n
nσ2 = σ2, ∴ * by virtue of identities used on the previous slide.

(2)
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covariance & correlation
Let a(x) and b(x) be two functions of random variables x = (x1, x2, ..., xn).

covariance matrix

Vab = cov[a, b] = E[(a− µa)(b− µb)] =

= E[ab]− E[aµb]− E[µab] + E[µaµb] =

= E[ab]− µaµb − µaµb + µaµb = E[ab]− µaµb =

=

∫ +∞

−∞
...

∫ +∞

−∞
a(x)b(x)f(x)dx1...dxn − µaµb

(3)

Note: E [E[a(x)]] = E[a(x)] as
∫
S
f(x)dx ≡ 1.

variance & correlation coefficient

Vaa = cov[a, a] = σ2
a ρa,b =

Vab
σaσb

. (4)

Note that −1 ≤ ρa,b ≤ 1.
Pawel Brückman Statistics in Data Analysis March 12, 2025 6 / 31



covariance & correlation
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word of caution

For independent variables x and y the joint p.d.f. satisfies f(x, y) = g(x)h(y) and
hence:

E[xy] = E[x]E[y] = µxµy

From the definition of covariance we get Vx,y ≡ 0.

The inverse cannot be inferred, though! I.e. Vx,y = 0 does not imply
independence of the variables!
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word of caution
correlated and uncorrelated variables (2D), examples
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Correlation vs causation
The hidden variable
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Derived random variable
mean of derived random variable

Let y(x) be a function of n random variables x = (x1, x2, ..., xn).
We know how to rigorously determine the p.d.f. of y. However, if the exact form
of f(x) is unknown and we only know the means and variances, we can
approximate these properties for y:

y(x) ≈ y(µ) +

n∑
i=1

[
∂y

∂xi

]
x=µ

(xi − µi)

mean value

E[y(x)] ≈ E[y(µ)] = y(µ), (5)

as E[xi − µi] ≡ 0.
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Error propagation
variance of derived random variable

E[y2(x)] ≈ y2(µ) + 2y(µ)

n∑
i=1

[
∂y

∂xi

]
x=µ

0︷ ︸︸ ︷
E[xi − µi] +E

[(
n∑
i=1

∂y

∂xi x=µ
(xi − µi)

)2]
=

= y2(µ) +
n∑

i,j=1

[
∂y

∂xi

∂y

∂xj

]
x=µ

Vij . (6)

(co)variance

σ2
y = E[y2]− (E[y])2 ≈

n∑
i,j=1

[
∂y

∂xi

∂y

∂xj

]
x=µ

Vij . (7)

and analogously:

Ukl = cov[yk, yl] ≈
n∑

i,j=1

[
∂yk
∂xi

∂yl
∂xj

]
x=µ

Vij , in short U = AV AT . (8)
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Error propagation
A simple 1D illustration

In the simplest case y = f(x), it is easy to see the origin of σy =
(

df
dx

)
x̄
σx:
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Error propagation
Watch out for traps...

In the previous example validity of the linear expansion was assumed, i.e. we
considered higher order terms in the Taylor expansion to be negligible.
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Error propagation
Watch out for traps...

We measure the transverse momentum of a track (pT ) from the fitted track
curvature which is inversly proportional to the radius of curvature (R) of the
track in the solenoidal magnetic field:

R = 0.3B(T)pT (GeV)

We obtain a symmetric (Gaussian) uncertainty on 1/R. Now we calculate the
error on pT . For simplicity, let us take pT = 1/x, and we know σx:

dpT
dx

= − 1

x2
= −p2

T hence σpT = p2
Tσx

Take the measured x to be 0.01± 0.005 GeV−1.

We obtain: pT = 100± 50 GeV.

The real variation corresponding to the uncertainty on x is:
pT = 100 + 100− 33 GeV.

The two results are very different (the latter being correct).
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De-correlation
unitary rotation in the xn space
Let x = (x1, x2, ..., xn) and Vij = cov[xi, xj ] their (symmetric) covariance matrix.
One can always find a linear transformation of x that diagonalizes the covariance:

yi =
n∑
j=1

Aijxj , cov[yi, yj ] = cov

[
n∑
k=1

Aikxk

n∑
l=1

Ajlxl

]
= AV AT = U, (9)

which is a special case of error propagation (exact, thanks to linear nature of the
transformation!). The problem boils down to diagonalising the the matrix V , i.e. finding
eigenvectors ri and their corresponding eigenvalues λi satysfying the eigenequation:

V ri = λir
i (10)

(note that: λir
iT rj = ri

T
V rj = λjr

iT rj
λi 6=λj
=⇒ ri

T
rj = δij if ri normalised).

A ≡



r
1

r
2

.....

.....

r
n


U = AV A

T
=


λ1

λ2 0
...

0 ...
λn

 (11)
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De-correlation
example: rotation in the 2D space

V =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
(12)

A =

(
cos θ sin θ
− sin θ cos θ

)
(13)

θ =
1

2
arctan

(
2ρσ1σ2

σ2
1 − σ2

2

)
(14)

Verify this result!

NOTE: Decorrelation will not
necessarily make the variables
independent!
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Tossing a coin
Binomial distribution

Tossing a coin can yield two distinct results (usually with
equal probability).

What is the probability of scoring n heads in N trials?

P (n(N, p)) =

number of sequences︷ ︸︸ ︷
N !

n!(N − n)!
pn(1− p)N−n︸ ︷︷ ︸

P of a particular sequence

.

(15)

The expectation value:

E[n(N, p)] =
N∑
n=0

n
N !

n!(N − n)!
pn(1− p)N−n = Np, (16)

which agrees with our intuition, e.g. for a fair coin (p = 0.5) we expect heads and
tail in 50/50 proportion.
Think of N independent trials, each with expectation value E[1(1, p)] = p.
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Binomial distribution
Is it a proper p.d.f., i.e. normalised?

1 To start with, recall the binomial theorem:

(a+ b)n =

n∑
k=0

(
n
k

)∗
akbn−k (17)

2 Now we can use the above to show that the binomial distribution is
normalised:

N∑
n=0

P (n(N, p)) =

N∑
n=0

(
N
n

)
pn(1− p)N−n = (p+ q)N = 1N = 1 ∴

(18)

∗ n!

k!(n− k)!
≡
(
n
k

)
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Binomial distribution
〈n〉 - rigorous calculation

〈n〉 =

N∑
n=0

nP (n(N, p)) =

N∑
n=0

n
N !

n!(N − n)!
pn(1− p)N−n

= Np

N∑
n=1

(N − 1)!

(n− 1)!(N − n)!
pn−1(1− p)N−n

= Np

N−1∑
n=0

(N − 1)!

n!(N − 1− n)!
pn(1− p)N−1−n

= Np

N−1∑
n=0

P (n(N − 1, p))︸ ︷︷ ︸
normalised

= Np ∴

(19)
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Binomial distribution

The variance is:

V ar[n(N, p)] = E[n2(N, p)]− (E[n(N, p)])2 = Np(1− p), (20)

which for a fair coin yields 1/4 of the number of trials N .
This can be rigorously calculated, but can be thought of in terms of error
propagation: V ar[1(1, p)] = p(1− p).
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Binomial distribution
V ar[n(N, p)] - rigorous calculation

V ar[n(N, p)] = 〈(n− 〈n〉)2〉 = 〈n2〉 − 〈n〉2 (21)

〈n2〉 =
N∑
n=0

n2P (n(N, p)) =
N∑
n=0

n2 N !

n!(N − n)!
pn(1− p)N−n

= Np
N∑
n=1

n
(N − 1)!

(n− 1)!(N − n)!
pn−1(1− p)N−n

= Np

N−1∑
n=0

(n+ 1)
(N − 1)!

n!(N − 1− n)!
pn(1− p)N−1−n

= Np

[
N−1∑
n=0

n
(N − 1)!

n!(N − 1− n)!
pn(1− p)N−1−n +

N−1∑
n=0

(N − 1)!

n!(N − 1− n)!
pn(1− p)N−1−n

]
= Np [(N − 1)p+ 1] = Np(Np− p+ 1)

(22)

V ar[n(N, p)] = 〈n2〉 − 〈n〉2 = Np(Np− p+ 1)− (Np)2 = Np(1− p) ∴ (23)
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Binomial distribution
Simple example

Suppose you are assessing efficiency of a certain process (vaxine effectiveness,
event selection, what have you...) and you observe n out of N passing the test.
What is the efficiency and its uncertainty?
This is a binomial process (fixed number of trials).
The best estimate of the efficiency is:

ε =
n

N
(〈ε〉 =

〈n〉
N

=
Np

N
= p)

How about the straightforward estimation of the variance:

σ2 =
ε(1− ε)
N

〈σ2〉 =
〈n〉
N2
− 〈n

2〉
N3

=
Np− p(Np− p+ 1)

N2
=
N + 1

N2
p(1− p) =

N + 1

N
V ar(ε)
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Multinomial distribution
generalization of binomial

Let us extend the process to m > 2 outcomes, e.g.
rolling a dice.

The only requirement is to have
∑m
i=1 pi = 1.

Probability distribution of a given sequence is given by:

P (n1...nm(N, p1...pm)) =
N !

n1!...nm!
pn1

1 ...pnmm . (24)

Can you derive the above?

One can calculate covariance from the joint probability distribution to get:

Vij = E[(ni − E[ni])(nj − E[nj ])] = −Npipj (25)

Note that for binomial ρ1,2 = −Np(1−p)√
Np(1−p)

√
N(1−p)p

= −1 (dice: ρk,l = ?)
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Multinomial distribution
generalization of binomial

Let us extend the process to m > 2 outcomes, e.g.
rolling a dice.

The only requirement is to have
∑m
i=1 pi = 1.

Probability distribution of a given sequence is given by:

P (n1...nm(N, p1...pm)) =
N !

n1!...nm!
pn1

1 ...pnmm . (26)

Can you derive the above?

One can calculate covariance from the joint probability distribution to get:

Vij = E[(ni − E[ni])(nj − E[nj ])] = −Npipj (27)

Note that for binomial ρ1,2 = −Np(1−p)√
Np(1−p)

√
N(1−p)p

= −1 (dice: ρk,l = −0.2)
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Multinomial distribution
generalization of binomial

Let us extend the process to m > 2 outcomes, e.g.
rolling a dice.

The only requirement is to have
∑m
i=1 pi = 1.

Probability distribution of a single outcome is simply:

P (ni(N, pi)) =
N !

ni!(N − ni)!
pnii (1− pi)N−ni , (28)

yielding E[ni] = Npi and V [ni] = Npi(1− pi).
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Counting experiment
Do counting of a random process (e.g. number of cars passing by
the IFJ main entrance in 10’). We want to know the probability
distribution to find a certain number of occurences.

A binomial limit when
N →∞, p = ε→ 0, Nε = µ = const.

P (n) =

(
N
n

)
εn(1− ε)N−n

P (n;µ) =
N !

(N − n)!n!

( µ
N

)n (
1− µ

N

)N−n
=
µn

n!

N !

(N − n)!

(N − µ)N−n

NN

N→∞
=

µn

n!

(
N − µ
N

)N
=
µn

n!

(
1− µ

N

)N ∗
=
µn

n!
e−µ ∴ (29)

Counting random process is described by the Poisson distribution:

P(n;µ) =
µn

n!
e−µ (30)

*
∣∣∣∣ln [(1− λ

x

)x
= e−λ

]
= −x ln

(
1− λ

x

)
' λ

1−λ
x

x→∞→ λ⇒ limx→∞
(
1− λ

x

)x
= e−λ

∣∣∣∣
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Poisson distribution

For large values of µ
Poisson distribution
asymptotically tends to
a Gaussian∗

G(µ, σ2 = µ)
* See the Central Limit Theorem

later in this lecture.

E[n] =
∞∑
n=0

n
µn

n!
e−µ =

∞∑
n=1

n
µn

n!
e−µ = µ

∞∑
n=1

µn−1

(n− 1)!
e−µ = µ

∞∑
k=0

µk

(k)!
e−µ = µ (31)

V [n] = E[n2]− (E[n])2 = E[n(n− 1) + n]− (E[n])2 = µ2 + µ− µ2 = µ (32)

Hence, the well known σ(N) =
√
N for event counting.
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Raindrops
Uniform distribution

Some processes have uniform probability over a limited range
of parameter (raindrops on a window sill). Usually these are
selected fiducial region of a wider distributed random process.

Characterised by a continuous uniform p.d.f.

Must have finite range in order to allow normalisation.

f(x;α, β) =

{ 1

β − α for α < x < β

0 otherwise
(33)

Mean and the variance are easily obtained:

E[x]=
∫ β
α

x
β−α dx=

1
2
(α+β), V [x]=

∫ β
α [x− 1

2
(α+β)]2 1

β−α dx=
1
12

(β−α)2. (34)

f(x; 0, 1) (or simply [0, 1]) is commonly used in statistics, notably for base random
number generators.

For any continuous p.d.f. f(x), y = F (x) is distributed according to [0, 1]. (?)
Hence, p.d.f. of x = F−1(y) will be f(x) if y has a uniform distribution [0, 1].
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Questions

1 Suppose two independent measurements of the same quantity gave the
following results:

x1 ± σ1 and x2 ± σ2

Take the weighted mean to be x̄ = wx1 + (1− w)x2. Find the w which
minimizes the error on the mean, hence provide expressions for the weighted
mean x̄ and its variance σ2

x̄.

Solutions to be sent to me before the next lecture
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Thank you
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Back-up
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