## Update about fitting

#### Two parallel approaches

#### 06/02/2025

# Overview

#### Approach 1

- Template fit in full BDT range without smoothing histograms.
- One toy with  $N_{sig} = 46 \& N_{bg} = 803$  generated.
- 1000 Toys study to check the fit stability.
- NLL and PLL distribution of a single random toy.

#### Approach 2

- Template fit in full BDT range with smoothing histograms.
- One toy with N<sub>sig</sub> = 46 & N<sub>bg</sub> = 803 generated.
- 1000 Toys study to check the fit stability.
- NLL and PLL distribution of a single random toy.

## Approach 1



### 1000 Toys for $N_{sig} = 46$



## NLL, PLL for the 3<sup>rd</sup> toy dataset

A RooPlot of "Nsig"



## Approach 2



Quality of fit (chi square/bin) MC data = 0.56

Toy data = 0.59

#### 1000 Toys for $N_{sig} = 46$



## NLL, PLL for the 3<sup>rd</sup> toy dataset

A RooPlot of "Nsig"



# Back up

#### 1000 Toys for $N_{bg} = 785$



## 1000 Toys for $N_{bg} = 785$







Approach 2

# Significance calculation

Approach 1  $\triangle \log L = 1.8 - 0 = 1.8$   $Z = sqrt (2\Delta \log L) = 1.89 \sigma$ Approach 2  $\triangle \log L = 2.5 - 0 = 2.5$  $Z = sqrt (2\Delta \log L) = 2.23 \sigma$