Work update

Some previous comments checks and TMVA basic plots

02/09/2024

Number of candidates

• The average number of candidates (for signal MC) after implementing all cuts on reconstruction level.

Additional cuts

• nLeptons = 2, foxWolframR2 < 0.3, $Q_{total} = 0$

Additional cuts & scaled to 10⁻⁵

• nLeptons = 2, foxWolframR2 < 0.3, $Q_{total} = 0$

TMVA try

- Started working on it, after a meeting (end July) with Karol.
- Following script (on right side).
- Working properly, however need to understand the output plots and input parameters (process).

Entraînement avec TMVA (Train.C)

TFile* outputFile = TFile::Open("output.root","RECREATE"); TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile, "!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification"); TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");
TTree* bkg = (TTree*)inputFile->Get("TreeB");
double sigWeight = 1.0; double bkgWeight = 1.0;
TMVA::DataLoader *dataloader =

new TMVA::DataLoader("dataset"); dataloader->AddSignalTree(sig, sigWeight); dataloader->AddBackgroundTree(bkg, bkgWeight); dataloader->AddVariable("var0", 'F'); dataloader->AddVariable("var1", 'F'); TCut mvcut = "";

dataloader->PrepareTrainingAndTestTree(mycut,"SplitMode=Random"); factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400: MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80"); factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher"); factory->TrainAllMethods(); // Train MVAs using training events factory->TestAllMethods(); // Evaluate all MVAs using test events // ----- Evaluate and compare performance of all configured MVAs factory->EvaluateAllMethods(); outputFile->Close();

delete factory; delete dataloader;

TMVA::TMVAGui("output.root");

TMVA detailed workflow

- Only working on the dedicated signal and B⁺B⁻ generic MC.
- Not sure how to deal all the four background components.
- Only taking the following variable {m_{Kpi}, m_{ROE}, p_{Itag}, cos(p_{Btag}, P_{vis.tag})}.

Input variables

Need to understand these plots (probably can be used for cuts optimization)

Correlation Matrix

Correlation Matrix (signal)

Correlation Matrix (background)

output_tmva00.root

output_tmva00.root

Scattered correlation plot (m_{Kpi})

Signal

Scattered correlation plot (mROE)

Background

10

m D

Signal

Scattered correlation plot (pltag)

Background

Signal

Scattered correlation plot cos(p_{Btag}, p_{vis.tag})

2 25

1.5

3

3.5

m Kpi

Background

1.5

2

0.5

2.5

p_ltag

10

m D

Signal

Scattered correlation plot cos(p_{Btag}, p_{vis.tag})

2 25

1.5

3

3.5

m Kpi

Background

1.5

2

0.5

2.5

p_ltag

10

m D

Signal

Background Vs Signal efficiency

TMVA response

Cut efficiencies

Cut efficiencies and optimal cut value

TMVA over training check

BDT control plot

