BDT update

Method

Approach 1

- Training and testing on $1M \tau \rightarrow \pi$ sample.
- Applying on the 8.9 M $\tau \rightarrow$ generic signal and three stream of MC.
- Estimated the N_{sig} and N_{bg} .

Approach 2

- Training and testing on 8.9M $\tau \rightarrow$ generic sample.
- Applying on the 4.4 M $\tau \rightarrow$ generic signal and three stream of MC.

- Estimated the N_{sig} and $N_{\text{bg}}.$

- Training and testing on 1M $\tau \rightarrow \pi$ sample.
- Applying on the 8.9 M $\tau \rightarrow$ generic signal and one stream of MC.
- Estimated the N_{sig} and $N_{\text{bg}}.$

ð

/ NP (N/L)

Ô

- Training and testing on 1M $\tau \rightarrow \pi$ sample.
- Applying on the 8.9 M τ→generic signal and one stream of MC.
- Estimated the $N_{\mbox{\tiny sig}}$ and $N_{\mbox{\tiny bg}}.$

BDT response TMVA overtraining check for classifier: BDT Signal (test sample) Signal (training sample) Background (test sample) Background (training sample). 2.5 Kolmogorov-Smirnov test: signal (background) probability = 0.142 (0) 2 e(0.0 1.5 0.5

0

0.2

0.4

0.6

BDT response

-0.2

-0.4

- Training and testing on 1M $\tau \rightarrow \pi$ sample.
- Applying on the 8.9 M τ→generic signal and one stream of MC.
 Estimated the N_{sig} and N_{bg}. • Applying on the 8.9 M $\tau \rightarrow$ generic signal and one

BDT optimal cut

Ponzi FOM

- Training and testing on 1M $\tau \rightarrow \pi$ sample.
- Applying on the 8.9 M $\tau \rightarrow$ generic signal and one stream of MC.
- Estimated the N_{sig} and $N_{\text{bg}}.$

N _{pi}	2862	1
N _e	159	0.05
N _{mu}	304	0.10
N _{rho}	1051	0.37
Nothers	339	0.12

BDT score

For 5×10^{-5} BF N_{sig} = 41 & N_{sig} = 25 (for only pi mode)

Background calculation

- Training and testing on 8.9M $\tau \rightarrow$ generic sample
- Applying on the 4.4 M $\tau \rightarrow$ generic signal and three stream of MC.
- Estimated the N_{sig} and $N_{\text{bg}}.$

Var. importance

Rank : Variable	: Variable Importance
<pre>1 : deltaE_Btag 2 : m_ROE 3 : p_ltag 4 : best_sum 5 : nPhotonsSelected 6 : nLepton</pre>	: 2.559e-01 : 2.007e-01 : 1.972e-01 : 1.819e-01 : 8.310e-02 : 8.123e-02

- Training and testing on 8.9M $\tau \rightarrow$ generic sample
- Applying on the 4.4 M τ→generic signal and three stream of MC.
- Estimated the N_{sig} and N_{bg} .

MaxDepth=3 to MaxDepth=2

BDT response

• Training and testing on 8.9M $\tau \rightarrow$ generic sample

- Applying on the 4.4 M τ→generic signal and three stream of MC.
- Estimated the N_{sig} and N_{bg} .

BDT optimal cut

BDT > 0.03

Ponzi FOM

- Training and testing on 8.9M $\tau \rightarrow$ generic sample
- Applying on the 4.4 M $\tau \rightarrow$ generic signal and three stream of MC.
- Estimated the N_{sig} and $N_{\text{bg}}.$

N _{pi}	1372	1
N _e	76	0.05
N _{mu}	153	0.11
N _{rho}	608	0.44
Nothers	185	0.13

For 5×10^{-5} BF N_{sig} = 26 & N_{sig} = 12 (for only pi mode)

Background calculation

ROC

Approach 1

FOM

Approach 1

Approach 2

Cut value applied on BDT output

FOM

Approach 1

Classifier	(#signal,	#backgr.)	Optimal-cut	S/(sqrt(S+B))	NSig	NBkg	EffSig	EffBkg
BDT:	((((1976,	1200)	-0.2191	35.811	1848	815	0.9352	0.6792
BDTG:		1976,	1200)	-0.6852	35.5719	1847	849	0.9347	0.7075
Fisher:		1976,	1200)	-0.3163	35.5465	1895	947	0.959	0.7892
MLP:		1976,	1200)	0.2156	35.7679	1843	812	0.9327	0.6767

<pre>classifier</pre>	==== (#signal	======================================	Optimal-cut	<pre>====================================</pre>		====== N	:======= ia	NBka	EffSia	FffBka
	<u>.</u>	,									
BDT:	(3594,	1200)	0.0314	1.23194e-05	2201	344	0.6124	0.28	67	
BDTG:	(3594,	1200)	-0.3724	1.15212e-05	3121	835	0.8684	0.69	58	
Fisher:	(3594,	1200)	-0.0890	1.18993e-05	2761	602	0.7682	0.50	17	
MLP:	(3594,	1200)	0.6220	1.24545e-05	1668	183	0.4641	0.15	25	

Ponzi FOM

Approach 1

Classifier	(======================================	#backgr.)	Optimal-cut	(S/500000)/(3.	/2+sqrt(B))	NS	======= ig N	NBkg Ef	fSig EffBkg
BDT: BDTG: Fisher: MLP:	(((1976, 1976, 1976, 1976,	1200) 1200) 1200) 1200)	0.1203 0.1895 -0.0549 0.7125	0.00013825 0.000132801 0.000130268 0.000140337	1064 1304 1484 956	193 329 453 147	0.5385 0.6599 0.751 0.4838	0.1608 0.2742 0.3775 0.1225	

Classifier	(#signal,	#backgr.)	Optimal-cut	(S/8912000)/(3	./2+sqrt(B))	 NS	ig	NBkg	EffSig	EffBkg
BDT:	(3594,	1200) 1200)	0.0314	1.23194e-05	2201	344	0.6124	0.28	57 58	
Fisher: MLP:	Ì	3594, 3594,	1200) 1200)	-0.0890	1.18993e-05 1.24545e-05	2761	602 183	0.7682	0.50	17 25	