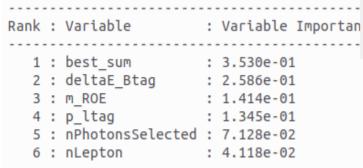
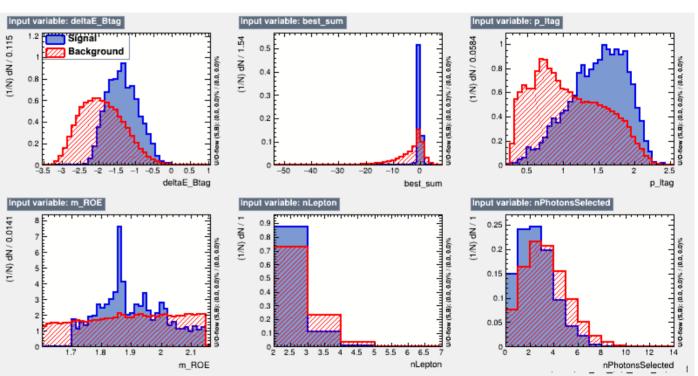
BDT update

04/12/2024

Method

Approach 1

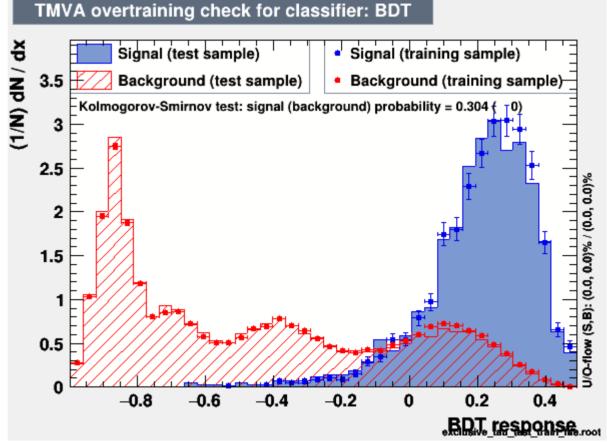

- Training (70%) and testing (30%) on the 1.0 M $\tau \! \rightarrow \! \pi$ sample.
- Applying on the 8.9 M τ → generic signal and ten streams (07 training, 03 testing) of MC.
- Estimated the N_{sig} and N_{bg}.


Approach 2

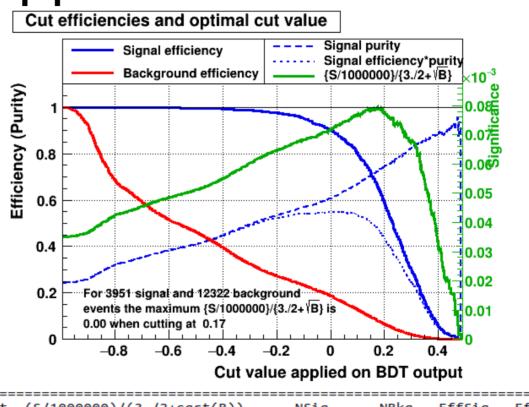
- Training (70%) and testing (30%) on 8.9M τ→ generic sample.
- Applying on the 4.4 M τ→generic signal and ten streams (07 training, 03 testing) of MC.
- Estimated the N_{sig} and N_{bg} .

- Training (70%) and testing (30%) on the 1.0 M $\tau \rightarrow \pi$ sample.
- Applying on the 8.9 M $\tau \rightarrow$ generic signal and ten streams (07 training, 03 testing) of MC.
- Estimated the N_{sig} and N_{bg} .

Var. importance



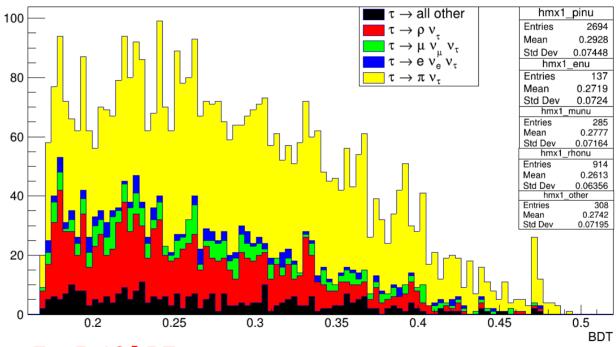
- Training (70%) and testing (30%) on the 1.0 M $\tau \rightarrow \pi$ sample.
- Applying on the 8.9 M $\tau \rightarrow$ generic signal and ten streams (07 training, 03 testing) of MC.
- Estimated the N_{sig} and N_{bg}


Now quite better agreement between train and test signal, background.

Approach 1

- Training (70%) and testing (30%) on the 1.0 M $\tau \rightarrow \pi$ sample.
- Applying on the 8.9 M $\tau \rightarrow$ generic signal and ten streams (07 training, 03 testing) of MC.
- Estimated the N_{sig} and N_{bg}

BDT > 0.17



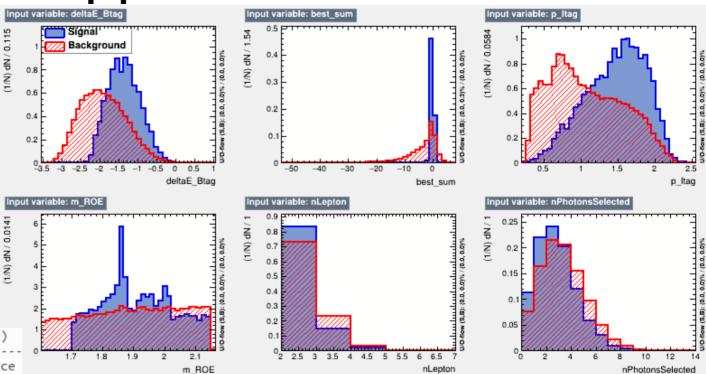
Classifier	(#signal,	#backgr.)	Optimal-cut	(S/1000000)/(3./2+sqrt(B)) N	ISig	NBkg	EffSig	EffBkg
BDT: BDTG: Fisher: MLP:	Ì	3951,	12322) 12322)	0.6288 -0.0114	7.93917e-05 7.83965e-05 5.00991e-05 5.60126e-05	2247.235 3197.476	737.9374 3884.158	0.5688 0.8093	0.0598 0.315	9	

- Training (70%) and testing (30%) on the 1.0 M $\tau \rightarrow \pi$ sample.
- Applying on the 8.9 M $\tau \rightarrow$ generic signal and ten streams (07 training, 03 testing) of MC.
- Estimated the $N_{\mbox{\tiny sig}}$ and $N_{\mbox{\tiny bg}}.$


N _{pi}	2694	1
N _e	137	0.05
N _{mu}	285	0.10
N _{rho}	914	0.34
Nothers	308	0.11

BDT score

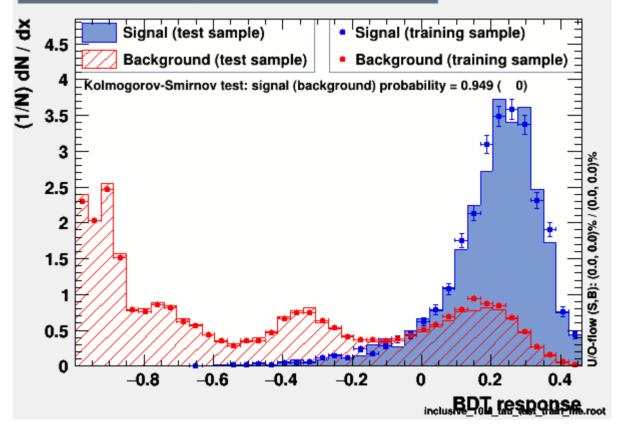
For $5x10^{-5}$ BF N_{sig} = 19 & N_{sig} = 12 (for only pi mode)


Background calculation

- Training (70%) and testing (30%) on 8.9M $\tau \rightarrow$ generic sample.
- Applying on the 4.4 M τ→generic signal and ten streams (07 training, 03 testing) of MC.
- Estimated the N_{sig} and $N_{\text{bg}}.$

Var. importance

Ranking result (top variable is best ranked)				
Rank	:	Variable	:	Variable Importance
1	:	best_sum	:	4.116e-01
2	:	deltaE_Btag	:	2.937e-01
3	:	m_ROE	:	1.364e-01
		p_ltag		9.655e-02
5	:	nPhotonsSelected	:	4.987e-02
6	:	nLepton	:	1.195e-02



- Training (70%) and testing (30%) on 8.9M $\tau \rightarrow$ generic sample.
- Applying on the 4.4 M τ→generic signal and ten streams (07 training, 03 testing) of MC.
- Estimated the N_{sig} and $N_{\text{bg}}.$

Now quite better agreement between train and test signal, background.

Approach 2

TMVA overtraining check for classifier: BDT

- Training (70%) and testing (30%) on 8.9M $\tau \rightarrow$ generic sample.
- Applying on the 4.4 M τ→generic signal and ten streams (07 training, 03 testing) of MC.
- Estimated the N_{sig} and $N_{\text{bg}}.$

BDT optimal cut

Classifier

BDT:

MLP:

BDTG:

Fisher:

BDT > 0.13

7188.

7188.

7188,

7188,

#signal, #backgr.)

12322)

12322)

12322)

12322)

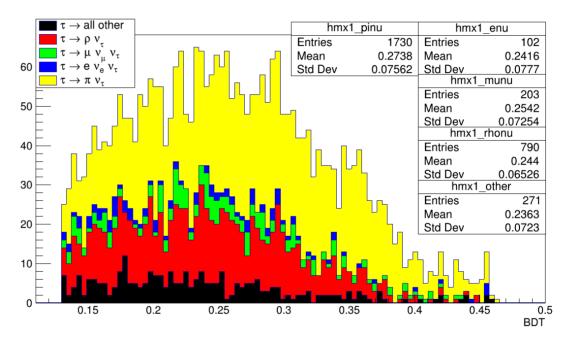
0.6007

1.0543e-05

5507.688

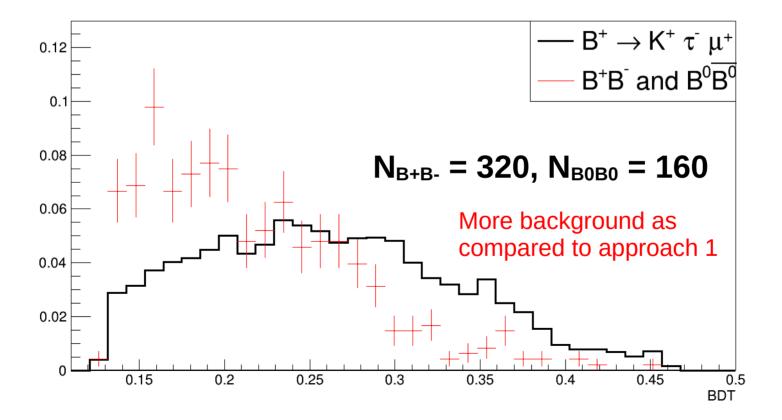
Approach 2

3262.473


0.7662

0.2648

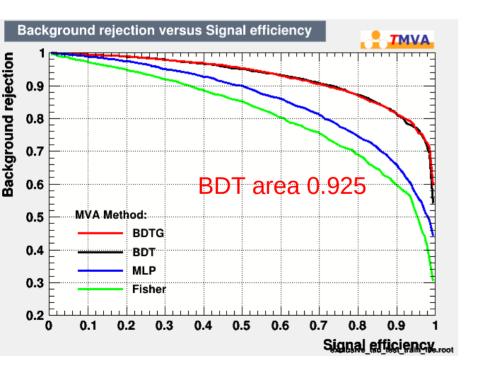
- Training (70%) and testing (30%) on 8.9M $\tau \rightarrow$ generic sample.
- Applying on the 4.4 M τ→generic signal and ten streams (07 training, 03 testing) of MC.
- Estimated the N_{sig} and $N_{\text{bg}}.$

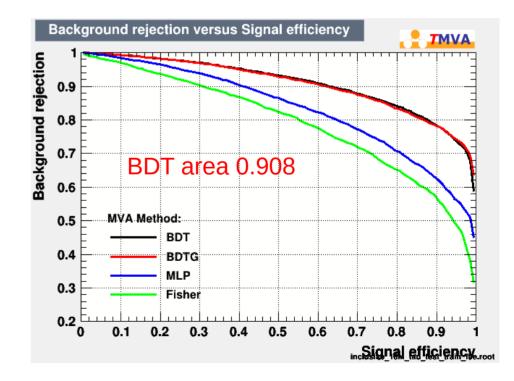

N _{pi}	1730	1
N _e	102	0.05
N _{mu}	203	0.11
N _{rho}	790	0.46
Nothers	271	0.16

BDT score

For 5×10^{-5} BF N_{sig} = 27 & N_{sig} = 15 (for only pi mode)

Background calculation





ROC (test train samples)

Approach 1

Approach 2

