BDT update

Background was over used in the last update

05/12/2024

Method

Approach 1

- Training (70%) and testing (30%) on the 1.0 M $\tau \! \rightarrow \! \pi$ sample.
- Applying on the 8.9 M τ → generic signal and ten streams (07 training, 03 testing) of MC.
- Estimated the N_{sig} and N_{bg}.

Approach 2

- Training (70%) and testing (30%) on 8.9M τ→ generic sample.
- Applying on the 4.4 M τ→generic signal and ten streams (07 training, 03 testing) of MC.
- Estimated the N_{sig} and N_{bg} .

- Training (70%) and testing (30%) on the 1.0 M $\tau \rightarrow \pi$ sample.
- Applying on the 8.9 M $\tau \rightarrow$ generic signal and ten streams (07 training, 03 testing) of MC.
- Estimated the $N_{\mbox{\tiny sig}}$ and $N_{\mbox{\tiny bg}}.$

Var. importance Ranking result (top variable is best ranked) Rank : Variable : Variable Importance 1 : best_sum : 2.390e-01 2 : deltaE_Btag : 2.055e-01 3 : p_ltag : 1.955e-01 4 : m_ROE : 1.817e-01 5 : nPhotonsSelected : 1.019e-01 6 : nLepton : 7.626e-02

Approach 1

- Training (70%) and testing (30%) on the 1.0 M $\tau \rightarrow \pi$ sample.
- Applying on the 8.9 M τ→generic signal and ten streams (07 training, 03 testing) of MC.
- Estimated the N_{sig} and N_{bg}

BDT response

Training (70%) and testing (30%) on the 1.0 M $\tau \rightarrow \pi$ sample.

- 8.9 Applying the Μ on signal $\tau \rightarrow qeneric$ and streams (07 training, 03 testing) of MC.
- Estimated the N_{sig} and N_{bg}.

Classifier

BDT:

MLP:

BDTG:

Fisher:

- Training (70%) and testing (30%) on the 1.0 M $\tau \rightarrow \pi$ sample.
- Applying on the 8.9 M $\tau \rightarrow$ generic signal and ten streams (07 training, 03 testing) of MC.
- Estimated the N_{sig} and N_{bg} .

BDT score

- Training (70%) and testing (30%) on the 1.0 M $\tau \rightarrow \pi$ sample.
- Applying on the 8.9 M $\tau \rightarrow$ generic signal and ten streams (07 training, 03 testing) of MC.
- Estimated the N_{sig} and $N_{\text{bg}}.$

N _{pi}	1875	1
Ne	80	0.04
N _{mu}	164	0.08
N _{rho}	556	0.30
Nothers	180	0.09

BDT score

- Training (70%) and testing (30%) on 8.9M $\tau \rightarrow$ generic sample.
- Applying on the 4.4 M τ→generic signal and ten streams (07 training, 03 testing) of MC.
- Estimated the N_{sig} and $N_{\text{bg}}.$

Var. importance

6 : nLepton

Ranking result (top var	iable is best ranked)
Rank : Variable	: Variable Importance
1 : deltaE_Btag 2 : m ROF	: 2.542e-01 : 2.287e-01
3 : best_sum	: 1.811e-01
4 : p_ltag	: 1.595e-01
5 : nPhotonsSelected	: 1.005e-01

: 7.592e-02

Approach 2

- Training (70%) and testing (30%) on 8.9M $\tau \rightarrow$ generic sample.
- Applying on the 4.4 M τ→generic signal and ten streams (07 training, 03 testing) of MC.
- Estimated the N_{sig} and $N_{\text{bg}}.$

BDT response

- Training (70%) and testing (30%) on 8.9M $\tau \rightarrow$ generic sample.
- Applying on the 4.4 M $\tau \rightarrow$ generic signal and ten streams (07 training, 03 testing) of MC.
- Estimated the N_{sig} and N_{bq}.

7188,

7188.

7188,

7188,

7988)

7988)

7988)

7988)

0.0745

0.2591

-0.0244

0.4911

BDT optimal cut BDT > 0.07

Classifier

BDT:

MLP:

BDTG:

Fisher:

Approach 2

Ponzi FOM

- Training (70%) and testing (30%) on 8.9M $\tau \rightarrow$ generic sample.
- Applying on the 4.4 M τ→generic signal and ten streams (07 training, 03 testing) of MC.
- Estimated the N_{sig} and $N_{\text{bg}}.$

BDT score

- Training (70%) and testing (30%) on 8.9M $\tau \rightarrow$ generic sample.
- Applying on the 4.4 M τ→generic signal and ten streams (07 training, 03 testing) of MC.
- Estimated the N_{sig} and $N_{\text{bg}}.$

N _{pi}	1271	1
N _e	62	0.05
N _{mu}	134	0.11
N _{rho}	524	0.41
Nothers	160	0.13

BDT score

N_{вово} = 54

ROC (test train samples)

Approach 1

Approach 2

TMVA

0.9

Signal efficiency, root

0.7

0.8

ROC (test train samples)

Approach 1

Correlation Matrix (background) Linear correlation coefficients in % 100 100 otonsSelected 80 -60 nLepton 100 40 20 m ROE 100 0 p_Itag 73 100 -20 -40 100 best_sum -60 -80 deltaE_Btag 100 -100 deltaE_Btag best_sum nPhotonsSelected m_ROE nLepton P_Itag

excl_test_Train.root

ROC (test train samples)

deltaE_Btag

100

deltaE_Blag

best_sum

P_Itag

Approach 2

Linear correlation coefficients in % 100 otonsSelected 100 80 60 nLepton -10 100 40 20 m_ROE 100 0 p_Itag 100 -20 -40 best sum 100 -60

m_ROE

nLepton

Correlation Matrix (background)

incl_test_Train.root

nPhotonsSelected

-80

-100