

Run: 154822, Event: 14321500 Date: 2010-05-10 02:07:22 CEST

 $p_{T}(\mu) = 27 \text{ GeV } \eta(\mu) = 0.7$ $p_{T}(\mu) = 45 \text{ GeV } \eta(\mu) = 2.2$

 $M_{\mu\mu} = 87 \text{ GeV}$

Z+μμ candidate in 7 TeV collisions

Model Standardowy - cząstki (prawdziwie) elementarne

cząstka	ładunek	masa	czas życia	
kwark u, d	2/3, -1/3	0,002 - 0,015 GeV	uwięziony	
kwark s, c, b, t	-1/3, 2/3,	0,1 - 173 GeV	krótki	
neutrina	0	~0	∞	
elektron	1	0,0005 GeV	∞	
mion	1	0,1 GeV	długi (2·10⁻ ⁶ s)	
taon	1	1,78 GeV	bardzo krótki	
foton	0	0	∞	
gluon	1	~0	uwięziony	
bozon W	1	80 GeV	bardzo krótki	
bozon Z	0	91 GeV	bardzo krótki	
bozon Higgsa	0	126 GeV odkryty w 2012 r.	bardzo krótki	

oraz odpowiadające im antycząstki

Uwięzienie kwarków

Kwarki występują jedynie w stanie związanym:

- bariony 3 kwarki (np. proton: uud, neutron: udd)
- mezony kwark + antykwark

Nazywamy to uwięzieniem kwarków.

barion ^{3 kwarki}

Mezon kwarki + antykwark

International Masterclasses 📃 F

Model Standardowy

Kwarki występują jedynie w stanie związanym:
bariony - 3 kwarki (np. proton: uud, neutron: udd)
mezony - kwark + antykwark
Dla ułatwienia przypisuje się kwarkom kolory
czerwony, zielony, niebieski, a antykwarkom kolory
dopełniające. Bariony i mezony są wtedy "blade".

Co stało by się, gdybyśmy próbowali rozdzielić kwarki?

barion ^{3 kwarki}

Mezon kwarki + antykwark

Model Standardowy

Kwarki występują jedynie w stanie związanym:

- bariony 3 kwarki
 (np. proton: uud, neutron: udd)
- mezony kwark + antykwark

Dla ułatwienia przypisuje się kwarkom kolory czerwony, zielony, niebieski, a antykwarkom kolory dopełniające. Bariony i mezony są wtedy "białe".

barion ^{3 kwarki}

Próba rozdzielenia kwarków poprzez dostarczenie im energii prowadzi do powstania pary kwark + antykwark kompensującej kolor:

Mezon kwarki + antykwark

Model Standardowy - rozpady

Λ m = 1,520 GeV

Kwark s rozpada się na kwark u przez emisję Bozonu W[–]

Λ m = 1,520 GeV

Różnica między masą cząstki Λ a sumą mas jej produktów rozpadu (π^{-} , p) przekształca się w energię rozlotu tych cząstek.

International Masterclasses Hands on Particle Physics

Rozpady bozonu Z:

- na leptony naładowane: e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$ (3 możliwości)
- na neutrina: $\nu_e \overline{\nu}_e, \nu_\mu \overline{\nu}_\mu, \nu_\tau \overline{\nu}_\tau$
- na kwarki: $u\overline{u}, d\overline{d}, s\overline{s}, c\overline{c}, b\overline{b}$

(15 możliwości)

(3 możliwości)

- 5 par kwark/antykwark * trzy kolory
- rozpad na parę tt̄ jest niemożliwy, bo kwark t ma zbyt dużą masę

Prawdopodobieństwa rozpadów nie są identyczne, dlatego obserwujemy różne liczby rozpadów na różne pary cząstek.

Neutrina są cząstkami bardzo słabo oddziałującymi z materią - praktycznie nie ma szans na ich bezpośrednie zaobserwowanie.

- Neutrina są cząstkami bardzo słabo oddziałującymi z materią - praktycznie nie ma szans na ich bezpośrednie zaobserwowanie.
- Kwarki z rozpadu bozonu Z przekształcają się w hadrony (dżety hadronowe), co utrudnia stwierdzenie, czy pochodziły z rozpadu Z.

- Neutrina są cząstkami bardzo słabo oddziałującymi z materią - praktycznie nie ma szans na ich bezpośrednie zaobserwowanie.
- Kwarki z rozpadu bozonu Z przekształcają się w hadrony (dżety hadronowe), co utrudnia stwierdzenie, czy pochodziły z rozpadu Z.

- Neutrina są cząstkami bardzo słabo oddziałującymi z materią - praktycznie nie ma szans na ich bezpośrednie zaobserwowanie.
- Kwarki z rozpadu bozonu Z przekształcają się w hadrony (dżety hadronowe), co utrudnia stwierdzenie, czy pochodziły z rozpadu Z.
- Cząstki
 τ prawie natychmiast rozpadają się, dlatego rozpady Z z ich udziałem są trudne do badania.
- Tylko rozpady na lekkie leptony (2 na 21 możliwości) są stosunkowo łatwe do wyszukania i badania.

Χ

Bozon Z jest produkowany w LHC w zderzeniach protonów.

Może on rozpadać się na kilka sposobów, nas będą interesowały rozpady na leptony:

Czasem może być trudno odróżnić rozpady Z od innych procesów dających parę $\mu^+\mu^-$ (lub e^+e^-):

Podobnie rozpadają się także inne cząstki, ale jak zobaczymy, można je odróżnić przy analizie masy niezmienniczej.

International Masterclasses

Hands on Particle Physics

Wykorzystujemy wzór relatywistyczny, wiążący ze sobą masę, energię i pęd cząstki:

$$E^2 = (mc^2)^2 + (\vec{p}c)^2$$

Energie i ped można zmierzyć. a potem wyliczyć mase.

Wykorzystujemy wzór relatywistyczny, wiążący ze sobą masę, energię i pęd cząstki:

$$E^2 = (mc^2)^2 + (\vec{p}c)^2$$

UWAGA O JEDNOSTKACH:

W obliczeniach fizycznych dotyczących zjawisk występujących w życiu codziennym, używamy standardowego układu jednostek (SI)

W fizyce cząstek elementarnych takie jednostki są niewygodne, gdyż musielibyśmy operować jednocześnie na bardzo małych i bardzo dużych liczbach. Dlatego energię wyrażą się w jednostkach eV - jest to energia jaką elektron uzyskuje po przejściu pola elektrycznego o różnicy potencjałów 1 V. (1 eV = 1,603 10⁻¹⁹ J) Dodatkowo, prędkości cząstek są bardzo bliskie prędkości światła. Dlatego pęd

cząstek wyraża się w eV/c co oznacza, że prędkość światła wynosi 1. Można wtedy pominąć c w powyższym wzorze - i przyjmuje on znacznie prostszą postać:

International Masterclasses

$$E^2 = m^2 + \vec{p}^2$$

Hands on Particle Physics

Wykorzystujemy wzór relatywistyczny, wiążący ze sobą masę, energię i pęd cząstki:

$$E^2 = (mc^2)^2 + (\vec{p}c)^2$$

Z prawa zachowania energii i pędu wynika, że dla cząstki rozpadającej się na dwie inne:

$$m = \sqrt{(E_1 + E_2)^2 - (\overrightarrow{p_1} + \overrightarrow{p_2})^2}$$

Dokonując pomiaru pędu i energii produktów rozpadu, możemy poznać masę cząstki, z której powstały.

Wykorzystujemy wzór relatywistyczny, wiążący ze sobą masę, energię i pęd cząstki:

$$E^2 = (mc^2)^2 + (\vec{p}c)^2$$

Z prawa zachowania energii i pędu wynika, że dla cząstki rozpadającej się na dwie inne:

$$m = \sqrt{(E_1 + E_2)^2 - (\overrightarrow{p_1} + \overrightarrow{p_2})^2}$$

Dokonując pomiaru pędu i energii produktów rozpadu, możemy poznać masę cząstki, z której powstały.

Jednocześnie powyższy wzór pozwala określić, jaką masę może mieć najcięższa wytwarzana cząstka, gdy zderzamy ze sobą przeciwbieżnie wiązki protonów:

$$m_{max} = \sqrt{4E_{beam}^2 - (\vec{p}_{beam,1} + \vec{p}_{beam,2})^2} = 2E_{beam}$$

International Masterclasses Hands on Particle Physics

Wyliczona masa bozonu Z dla wielu przypadków:

Charakteryzuje się ona pewną wartością średnią: 91.1876 ± 0.0021 GeV oraz szerokością rozkładu: 2.4952 ± 0.0023 GeV (bez uwzględnienia błędów pomiarowych)

Hands on Particle Physics

International Masterclasses

Odkrywanie nowych cząstek

Badanie rozkładu masy niezmienniczej obserwowanych cząstek doprowadziło do odkrycia wielu nowych cząstek.

W ten sposób znaleziona została np. cząstka J/ψ , o masie 3,0969 GeV (składająca się z dwu kwarków $c\overline{c}$) i rozpadająca się m.in. na parę e^+e^- .

Nowych cząstek można spodziewać się zwłaszcza wtedy, gdy zwiększamy energię zderzenia i mamy szansę wyprodukować cząstki o masie większej niż dotychczas.

Samuel C.C. Ting - współlaureat Nagrody Nobla z rozkładem masy niezmienniczej par **e⁺e⁻**.

International Masterclasses

Powstanie i rozpady cząstki Higgsa:

Cząstka Higgsa powstaje w dość skomplikowany sposób przedstawiony na diagramie Feynmana:

Powstanie i rozpady cząstki Higgsa:

Również rozpad cząstki Higgsa jest dość skomplikowany:

Powstanie i rozpady cząstki Higgsa:

Możliwych jest bardzo wiele różnych typów rozpadu cząstki Higgsa:

Decays of a 125 GeV Standard-Model Higgs boson

Nas będą interesowały rozpady na dwa bozony Z lub na dwa fotony dość rzadkie, ale za to stosunkowo łatwe do odróżnienia od przypadków, w których bozonu Higgsa w ogóle nie było.

Jak możemy badać cząstki elementarne?

- Cząstek elementarnych nie da się wziąć w rękę czy położyć na wadze, dlatego stosuje się metody pośrednie, pozwalające na identyfikację takich cząstek.
- Potrzebne są do tego specjalne urządzenia – akceleratory.
- Cząstki "produkujemy" w akceleratorach zderzając inne cząstki ze sobą, bądź z "tarczą". W takim zderzeniu wyzwala się energia, z której może nastąpić produkcja 1, 2, 3, ..., N cząstek
- Produkcja zawsze następuje z zasadą zachowania energii i pędu.

Największym akceleratorem jest Wielki Zderzacz Hadronów (LHC) w CERN.

International Masterclasses 📃 Hands on Particle Physics

Akcelerator LHC

- znajduje się w CERNie, pod Genewą, w Szwajcarii
- umieszczony w tunelu o długości bliskiej 27 km
- zawiera 9300 magnesów
- magnesy pracują w temperaturze 1,9 K (czyli -271,3°C)
- w przeciwnych kierunkach krążą w nim dwie wiązki protonów zderzających się w 4 miejscach
- protony poruszają się z prędkością równą 99.99999991% prędkości światła
- protony osiągną energię do 7 TeV (w każdej wiązce) - aktualnie po 6,8 TeV
- oprócz protonów, w LHC przyspieszane i zderzane są także jądra ołowiu

Akcelerator LHC – główne eksperymenty

A Large Ion Collider Experiment

European Organisation for Nuclear Research

ATLAS

ALICE

CMS

Compact Muon Solenoid experiment at CERN's LHC

LHCb

Large Hadron Collider beauty experiment

Detektor ATLAS

Długość : 46 m Średnica : 25 m Waga : 7 tys. ton wieża Eiffela 10 tys. ton!

~ 100 mln kanałów
elektroniki
~ 3000 km kabli
Koszt: 450 milionów CHF

International Masterclasses 📃 Hands on Particle Physics

Detektor ATLAS

International Masterclasses

Hands on Particle Physics

Hands on Particle Physics

P

Powstaje pytanie, jak odróżnić jedne cząstki od innych, np. elektrony (pozytony) od mionów?

Można tego dokonać analizując ślady pozostawione przez cząstki w detektorze.

asfalt

Powstaje pytanie, jak odróżnić jedne cząstki od innych, np. elektrony (pozytony) od mionów?

Można tego dokonać analizując ślady pozostawione przez cząstki w detektorze.

śnieg

asfalt

Powstaje pytanie, jak odróżnić jedne cząstki od innych, np. elektrony (pozytony) od mionów?

Można tego dokonać analizując ślady pozostawione przez cząstki w detektorze.

W detektorze nie "widzimy" cząstek – widzimy skutki ich oddziaływania z materią detektora

asfalt

International Masterclasses

śnieg

Hands on Particle Physics

śnieg

Elementy detektora w eksperymentach fizyki cząstek elementarnych

Ślady w detektorze pozostawiane przez różne typy cząstek

Hands on Particle Physics

37

Co z neutrinem ? wykrywane na podstawie brakującego pędu

International Masterclasses

Obserwowanie produktów rozpadów bozonu Z i Higgsa w detektorze:

Detektor śladowy:

- elektron: widoczny ślad
- mion: widoczny ślad
- foton: brak śladu

Kalorymetr elektromagnetyczny:

- elektron: wyraźny depozyt energii
- mion: widoczny ślad
- foton: wyraźny depozyt energii

Kalorymetr hadronowy:

- elektron: bez sygnałów
- mion: widoczny ślad
- foton: bez sygnałów

Detektor mionowy:

- elektron: brak śladu
- mion: widoczny ślad
- foton: brak śladu

Hands on Particle Physics

e

Przyszłość Fizyki Cząstek – LHC Dużej Świetlności (HL-LHC)

- HL-LHC to planowana modernizacja Wielkiego Zderzacza Hadronów (LHC), która rozpocznie się po 2029 roku.
- Celem jest zwiększenie liczby zderzeń protonów (tzw. świetlności) nawet 10 razy w porównaniu do obecnego LHC.
- Pozwoli to na dokładniejsze badania bozonu Higgsa oraz poszukiwanie nowych cząstek i zjawisk fizycznych.

Więcej danych = większa szansa na odkrycie nowej fizyki!

Przyszłość LHC – LHC Dużej Świetlności (HL-LHC)

Wyzwania:

- Zwiększona liczba zderzeń oznacza więcej danych do analizy – potrzeba potężniejszych komputerów i algorytmów.
- Większe promieniowanie może uszkadzać detektory – naukowcy projektują nowe, bardziej odporne technologie.
- Mocniejsze magnesy są konieczne do precyzyjnego prowadzenia wiązek cząstek.

Przyszły Detektor Wewnętrzny eksperymentu ATLAS dla HL-LHC

Hands on Particle Physics

~ 9500 elementów 33h składania Skala 50:1

designed by Sascha Mehlhase

1111

Projekt CREDO wspólne badanie promieniowania kosmicznego

Smartfon jako detektor:

- sygnały od cząstek naładowanych są odbierane w matrycy aparatu fotograficznego
- przy zakrytym obiektywie będą widoczne jako jaśniejsze punkty na czarnym tle
- jako kolejne klatki filmu mogą być rejestrowane przez odpowiednie oprogramowanie

Aplikacja CREDO detector

- rejestruje cząstki promieniowania kosmicznego
- analizuje obrazy, odrzucając puste lub naświetlone
- wysyła informacje na serwer
- dane są analizowane przez fizyków
- dostępna w Google Play
- każdy może dołączyć!

Konkurs Łowcy Cząstek: https://credo.science/lowcyczastek/

http://fun.ifj.edu.pl

Poziom 1 Wynik: 101pkt			
R	 		
neutron n +8pkt			
↑ ?	 		

Tepraszamy do gry!
Zasady Punktacja
Autorzy O cząstkach

				Ī
Poziom 1 Wynik: 97pkt				
A. A	 			
pion neutralny π^0 +3pkt				
≜ ?	 			