





# Prospects of the inclusive $B \rightarrow D_s^{(*)} X$ decays at Belle (II)

Jarek Wiechczyński 13.11.2024

# Plan of the talk

- Motivation
- My past work on Belle 1
- Initial studies on B2BII
  - $\rightarrow$  signal MC
  - $\rightarrow$  generic MC

 $\rightarrow\,$  comparison of two FEI's

# Motivation

Studying inclusive D<sub>x</sub> X production in both upper and lower D<sub>x</sub> vertex:

 $B^+ \rightarrow D_s^+ X^0$  and  $B^- \rightarrow D_s^+ X^{--}$ 





- Very accurate theoretical predictions for the inclusive decay rates
   → precise tests of the Standard Model
- $B \rightarrow D_s^{(*)} X$  decays account for a large background contribution to the semileptonic channels (like  $b \rightarrow s \ ll$  transitions )

# Motivation



Experimentally measured the most common **exclusive** B decays do not fill out the **inclusive** value!

$$\begin{array}{ll} \mbox{inclusive:} & B^+ \to D_s^- X & (1.10 \ {}^{+0.40}_{-0.32}) \times 10^{-2} & Phys.Rev.D \ 75 \ (2007) \ 072002 \\ 231 \ \text{million BB-bar events recorded with the BABAR} \\ \mbox{exclusive:} & B^+ \to D_s^- D_s^+ K^+ & (1.2 \ {}^{\pm}0.4) \times 10^{-4} & Physical \ Review \ D, \ 108(3) - LHCb \ (2023) \\ B^+ \to D_s^- \pi^+ K^+ & (1.45 \ {}^{\pm}0.24) \times 10^{-4} & J. \text{Wiechczynski et al Phys.Rev.D \ 80 \ (2009) \ 052005 \\ Phys.Rev.Lett. \ 100 \ (2008) \ 171803 \ (BaBAR) & J. \text{Stypula et al, Phys.Rev.D \ 86 \ (2012) \ 072007 \\ Phys.Rev.Lett. \ 107 \ (2011) \ 041804 \ (BaBar) & J. \text{Stypula et al, Phys.Rev.D \ 86 \ (2012) \ 072007 \\ Phys.Rev.Lett. \ 107 \ (2011) \ 041804 \ (BaBar) & J. \text{Stypula et al, Phys.Rev.D \ 86 \ (2012) \ 072007 \\ Phys.Rev.Lett. \ 107 \ (2011) \ 041804 \ (BaBar) & J. \text{Stypula et al, Phys.Rev.D \ 86 \ (2012) \ 072007 \\ Phys.Rev.Lett. \ 107 \ (2011) \ 041804 \ (BaBar) & J. \text{Stypula et al, Phys.Rev.D \ 86 \ (2012) \ 072007 \\ Phys.Rev.Lett. \ 107 \ (2011) \ 041804 \ (BaBar) & J. \text{Stypula et al, Phys.Rev.D \ 86 \ (2012) \ 072007 \\ Phys.Rev.Lett. \ 107 \ (2011) \ 041804 \ (BaBar) & J. \text{Stypula et al, Phys.Rev.D \ 86 \ (2012) \ 072007 \\ Phys.Rev.Lett. \ 107 \ (2011) \ 041804 \ (BaBar) & J. \text{Stypula et al, Phys.Rev.D \ 86 \ (2012) \ 072007 \\ Phys.Rev.Lett. \ 107 \ (2011) \ 041804 \ (BaBar) & J. \text{Stypula et al, Phys.Rev.D \ 86 \ (2012) \ 072007 \\ Phys.Rev.Lett. \ 107 \ (2011) \ 041804 \ (BaBar) & J. \text{Stypula et al, Phys.Rev.D \ 86 \ (2012) \ 072007 \\ Phys.Rev.Lett. \ 107 \ (2011) \ 041804 \ (BaBar) & J. \text{Stypula et al, Phys.Rev.D \ 86 \ (2012) \ 072007 \\ Phys.Rev.Lett. \ 107 \ (2011) \ 041804 \ (BaBar) & J. \text{Stypula et al, Phys.Rev.D \ 86 \ (2012) \ 072007 \\ Phys.Rev.Lett. \ 107 \ (2011) \ 041804 \ (BaBar) & J. \text{Stypula et al, Phys.Rev.D \ 86 \ (2012) \ 072007 \\ Phys.Rev.Lett. \ 107 \ (2011) \ 041804 \ (BaBar) & J. \text{Stypula et al, Phys.Rev.D \ 86 \ (2012) \ 072007 \\ Phys.Rev.Lett. \ 107 \ (2011) \ 041804 \ (BaBar) & J. \text{Stypula et al, Phys.Rev.D \ 86 \ (2012) \ 07207 \\ Phys.Rev.Lett. \ 107 \ (20$$

# Motivation

#### upper $D_s$ vertex $\rightarrow$ spektroscopy of cq (q= u,d) states



heavy-light mesons model

# Inclusive study of charmed mesons $\rightarrow$ missing mass (mx) analysis:

- orbital excited D<sup>\*\*</sup> production seen in mx
- potential observation of radial excited states

#### Current values:

$$B^+ o D^{(*)+}_s \overline{D}^{**0}$$
 ( $2.7 \pm 1.2$ )  $imes 10^{-2}$  Phys.Rev.D 62 (2000) 112003  
 $B^+ o D^+_s X$  ( $7.9 \, {}^{+1.4}_{-1.3}$ )  $imes 10^{-2}$  Phys.Rev.D 75 (2007) 072002

• For L=0  $\rightarrow$  well known D and D\* mesons  $\vec{j}_q = \vec{L} + \vec{s}_q$ • For L=1  $\rightarrow$  four D\* states broad D<sub>0</sub>\* and D<sub>1</sub>' states (j<sub>q</sub>=1/2) narrow D<sub>1</sub> and D<sub>2</sub>\* states (j<sub>q</sub>=3/2)

Radial excitation states (n=2): For L=0  $\rightarrow$  D' and D<sup>\*</sup>'



# Method of the analysis and PLANS



3.

 $\rightarrow$  BF calculaction for different charge configurations

Oliwia Krasowska PHD student, Krakow

 $\rightarrow$  Study of the missing mass (mx)

$$mx = \sqrt{p_{miss}^2} = \sqrt{(p(\Upsilon(4S)) - p(B_{tag}) - p(D_s^{(*)}))^2}$$

• Spektroscopy of cq  $\rightarrow$  Inclusive method, independent on the charm meson decay! Jarek Wiechczyński

Quick overview from my past work at Belle:

 $\rightarrow$  missing mass (mx) analysis for B<sup>+</sup>  $\rightarrow$  D<sub>s</sub><sup>(\*)+</sup>X

- Analysis was performed using Belle1 software (basf1)
   → my own modules module in C++
- Utilization of FullRecon package (NeuroBayes based - hadronic tagging) for B<sub>tag</sub> reconstruction
- The analysis was already at the stage of internal Belle refering process ...

#### A lot of offline tools have been prepared for this study!



Belle Note 1473 April 26, 2019

Searching for excited charm mesons in the inclusive  $B^+ \to D_s^{(*)+}X \text{ measurement}$ 

J. Wiechczyński wiechczynski@belle2.ifj.edu.pl

H.Niewodniczański Institute of Nuclear Physics of the Polish Academy of Sciences, Kraków, Poland

#### Abstract

The inclusive  $B^+ \rightarrow D_s^{(*)+} X$  decays are studied using the ON  $\Upsilon(4S)$  data sample of  $772 \times 10^6$  pairs of  $B\bar{B}$  mesons, collected by the Belle detector at KEKB, an asymmetric  $e^+e^-$  collider. The hadronic tagging and missing mass method are used to search for the orbital/radial excitation of the charm states, independently of their decay modes. In addition, the characteristics of inclusive  $D_s^{(*)+}X$  final states can be compared for upper and lower vertex for the  $D_s$  production.

#### 1 Introduction

The mechanism of the production of the charm resonances of the masses above 2.4 GeV/ $c^2$ in B meson decays is still not well known. This is related to the main source of the uncertainty in the determination of the  $V_{cb}$  element of the CKM matrix [?]. To date we still observe some discrepancies between theoretical predictions and experiment results on this field [?].

The  $c\bar{q}$  spectra is very reach and still in case of interest of many theoretical and experimental groups. The well established D and  $D^*$  mesons correspond to the ground state (L=0) of the  $c\bar{u}$  system. The first orbital excitations (L=1), called jointly as  $D^{**}$ , comprises of four states. Two of them,  $D_1$  and  $D_2^*$  characterized by total spin of the c quark  $j_c = 3/2$ , are relatively narrow and have been experimentally observed many times. The other two,  $D_1'$  and  $D_0^*$  with  $j_c = 1/2$ , are broad (~ 300 MeV) and thus more difficult to detect. Resonances with L>1 are also expected.

Except for the angular excitations, we also expect radially excited states. The lightest candidates with L=0 are called D' and  $D^*$ ', where the second one was firstly observed in  $D^*\pi\pi$  mode by DELPHI [1]. However, some other studies did not see such state [2]. Figure 1 shows masses of cu spectrum predicted by Godfrey-Isgur model [3].

https://belle.kek.jp/secured/belle\_note/gn1473/BN\_dsx\_ver1.pdf

#### Decay channels:

D<sub>s</sub> was reconstructed in three decay modes:

$$\begin{split} & D_{s} \rightarrow \varphi \pi \\ & D_{s} \rightarrow K^{*0} K \qquad \text{and} \qquad D_{s}^{*} \rightarrow D_{s} \gamma \\ & D_{s} \rightarrow K^{0}{}_{s} K \end{split}$$

**Reference channels:** 

$$\begin{array}{ll} B^{+} \rightarrow D_{s}D^{0} & B^{+} \rightarrow D_{s}^{*}D^{0} \\ B^{+} \rightarrow D_{s}D^{*0} & B^{+} \rightarrow D_{s}^{*}D^{*0} \end{array}$$

So far, only charged B decays were considered!



#### Simulated data samples:

| generic MC | # of sample |
|------------|-------------|
| mixed      | 10 streams  |
| charged    | 10 streams  |
| charm      | 6 streams   |
| uds        | 6 streams   |

| ledicated $B \to D_s^{(*)} D^{(*)0}$ | # of events |
|--------------------------------------|-------------|
| $B \to D_s D^0$                      | 1 milion    |
| $B \to D_s D^{*0}$                   | 1 milion    |
| $B \to D_s^* D^0$                    | 1 milion    |
| $B \to D^*_s D^{*0}$                 | 1 milion    |

| dedicated $B \to D_s^{(*)} D^{**}$ | fraction of 2M $(5M)$ events |
|------------------------------------|------------------------------|
| $B \to D_s^{(*)} D_1^0$            | 0.2128                       |
| $B \to D_s^{(*)} D_2^{*0}$         | 0.5746                       |
| $B \to D_s^{(*)} D_1^{\prime 0}$   | 0.1063                       |
| $B \to D_s^{(*)} D_0^{*0}$         | 0.1063                       |









В

 $\mathsf{B}_{\mathsf{sig}}$ 

Cuts on intermediate resonances

 $|m_{\kappa\kappa} - m^{\phi}| < 14.7 \text{ MeV}$ (3 $\sigma$  of the Breit-Wigner's width)



 $|\mathbf{m}_{\kappa\pi} - \mathbf{m}^{\kappa*}| < 61.5 \text{ MeV}$ (2.5 $\sigma$  of weighted width)





## Best candidate selection

 $\rightarrow$  performed after applying all the cuts

 $\rightarrow$  applied for  $B_{tag}$  and  $D_{s}^{(*)}$  multiple candidates

 $\rightarrow$  based on 'nbout' and (mass diff)²/σ²





#### Missing mass analysis (signal MC) - signal components



#### Missing mass analysis (signal MC) - Crossfeed components



Mx distributions – contributions from 4 types of generic MC



charged mixed charm uds

Mx distributions – specific signal and X-feed contributions from MCgen 'charged'



#### **Correction factors accounting for different efficiency of B**<sub>tag</sub> **reconstruction for data & MC**

Coefficients (weights) as an additional variable in the ntuple (function of nbout and Btag\_mode):

1.8605729

3.2150764

1.8897345

0.6876546

0.5291972

0.6874800

0.5846295



"Weighted fits" can be used for MC samples for better agreement with the data

#### Background analysis – 4 components based on $M_{hc} \& m(D_s)$ distributions





#### **MDS** component:











m<sub>Ds</sub> [GeV/c<sup>2</sup>]

SIG component: 2200 2000 2000 F 1800 2500 1400 2000 1500 1000 1000 atterte totrespacesestattett 0 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2 2.01 5.265 5.27 5.255 5.26 5.275 5.28 5.285 5.29 2 2.01 M<sub>bc</sub> [GeV/c<sup>2</sup>]

#### Background analysis – fits in different bins of missing mass



mv

### PDFs components for simultaneus fit to both *mx*s - **Mcgen**



From 2D fits

**Simultaneous Fit** to MCgen (signals + x-feeds + 4 background contributions)



Comparison of data (mx in control regions) and scaled MC



D<sub>s</sub>\*

 $\mathsf{D}_{\mathsf{s}}$ 

# Initial studies on B2BII



- Dedicated Monte Carlo:  $B^{\text{-}} \rightarrow D_{\text{s}}^{\text{-}} D^{\text{**}}$  and  $B^{\text{+}} \rightarrow D_{\text{s}}^{\text{*-}} D^{\text{**}}$ 

| Decay B-<br>0.1063<br>0.1063<br>0.2128<br>0.5746 | myD_s- D_0*0<br>D'_10 myD_s-<br>D_10 myD_s-<br>D_2*0 myD_s- | Decay B-<br>0.1063<br>0.1063<br>0.2128<br>0.5746 | myD_s*- D_0*0<br>D'_10 myD_s*-<br>D_10 myD_s*-<br>D 2*0 myD s*- |
|--------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------|
| Enddecay                                         | 0_2**0 My0_3*                                               | Enddecay                                         | 0_2*0 Hy0_5*-                                                   |

(Belle1 decayDec)

- B<sub>tag</sub> reconstruction with (default) hadronic FEI
- FastBDT algorithm to distinguish good gammas (from  $D_s^*$ ) from beam bkg & fake photons
  - $\rightarrow pybdt\_bb>0.3$  and  $pybdt\_fp>0.3$  (Meihong Liu)

# B<sub>tag</sub> variables

#### (preliminary, arbitrary cuts)



# D<sub>s</sub><sup>(\*)</sup> variables

(preliminary, arbitrary cuts)



## Missing mass distributions

Signal MC:  $B^- \rightarrow D_s^{(*)-} D^{**}$ 

D<sub>s</sub> reconstruction





# Study of generic Monte Carlo (Belle 1)

- One stream of MC (uds, charm, mixed, charged)
- Using B2BII
- Comparison between **default FEI** and **custom FEI** (Roman, Murad)
- For both  $\boldsymbol{D}_s$  and  $\boldsymbol{D}_s^*reconstruction$







# Status & plans

- Analysis has just been restarted from the beginning using basf2 software

   → collaboration with IITB (and maybe IITM) group
- Full Event Interpretation (hadronic FEI) is used to reconstruct  $B_{tag} \rightarrow possible$  utilization of the **custom FEI**
- Both branching fraction (for different charge configurations) and recoil mass (Mx) will be studied
- We aim to combine Belle1 (B2BII) + Belle II data sample
- Plan of adding neutral  $B^0 \rightarrow D_s X$

# BACKUP

#### Toy MC for simultaneous fit to MCgen



#### Attempt to systematics – $D^{(*)0}$ signal shape: two Gaussians + fraction

Fit to missing mass distribution for  $D_s D^0$  signal – only shape parameters are floating

 $\rightarrow$  **Coleration Matrix** for shape parameters:

|        | frac   | width1 | I | width2 |
|--------|--------|--------|---|--------|
| frac   | 1      | 0.8389 |   | 0.851  |
| width1 | 0.8389 | 1      |   | 0.6947 |
| width2 | 0.851  | 0.6947 |   | 1      |

|                   |                              | frac                               | width1                              | width2                              |  |
|-------------------|------------------------------|------------------------------------|-------------------------------------|-------------------------------------|--|
| Covariance Matrix | frac  <br>width1  <br>width2 | 0.005505<br>6.363e-05<br>0.0004199 | 6.363e-05<br>1.045e-06<br>4.723e-06 | 0.0004199<br>4.723e-06<br>4.423e-05 |  |





Generation of 1000 sets of shape parameters (width<sup>1</sup>, width<sup>2</sup>, frac) based on Covariance Matrix

#### Fit for each set of fixed shape parameters (width<sup>1</sup>, width<sup>2</sup>, frac) $\rightarrow$ 1000 fits

→ distribution: Nsig (and Nbckg) - free fit parameters



width1 = 0.0160 ± 0.001 width2 = 0.0392 ± 0.006

x 1000

2.1 mx [GeV/

#### Particle Physics Summer Student Programme 2022 (IFJ PAN, Krakow)

 $\rightarrow$  inclusive BF



Based on 2D unbinned maximum likelihood fit for Mbc and Ds



$$N_{sig}^{up} = 9884.9 \pm 219.0$$

MC

total fit good Btag and good Ds good Btag and wrong Ds wrong Btag and good Ds wrong Btag and wrong Ds

$$N_{sig}^{low} = 1010.4 \pm 17.9$$



$$\frac{\mathcal{B}(B^- \to D_s^+ X)}{\mathcal{B}(B^- \to D_s^+ X) + \mathcal{B}(B^- \to D_s^- X)} =$$

9.27 ± 0.24 (stat) % MC 8.96 ± 1.67 (stat) % data  $D_s$  momentum distribution





#### Particle Physics Summer Student Programme 2017 (IFJ PAN, Krakow)

 $\rightarrow$  X analysis for B<sup>+</sup>  $\rightarrow$  D<sub>s</sub><sup>-</sup>X

Monte Carlo 
$$B^+ \rightarrow D_s^- K^+ e^+ \nu$$





#### Particle Physics Summer Student Programme 2017 (IFJ PAN, Krakow)

 $\rightarrow$  X analysis for B<sup>+</sup>  $\rightarrow$  D<sub>s</sub><sup>-</sup>X

Monte Carlo 
$$B^+ 
ightarrow D^-_s K^+ \mu^+ 
u$$





# Main cuts

# B tag: $|\Delta E + 5.8| < 40.0 \text{ MeV}$ $M_{bc} > 5.27 \text{ GeV}$ cs-nbout > 0.01 $B_{tag} = B^{+}$

#### Signal side:

 $\begin{array}{l} 1.5 \; \text{GeV} < mx < 3.2 \; \text{GeV} \\ |m(D_{_{\rm S}})\text{-}m(D_{_{\rm S}})^{\text{PDG}}| < 3\sigma \\ B_{_{\rm flav}} * d_{_{\rm flav}} < 0 \end{array}$ 

L(K/ $\pi$ )>0.4 (for K) L( $\pi$ /K)>0.1 (for  $\pi$ ) L(mu,e)<0.95 (veto) After applying all cuts: Best  $B_{tag}$  and  $D_s^{(*)}$  selection:

• 
$$B_{tag}$$
 of highest nbout  
• best  $D_s$ :  
• min  $\frac{(m(D_s)-m(D_s)^{PDG})^2}{\sigma^2}$   
or • CL (from mass constained fi

or  $\rightarrow$  CL<sub>DS</sub> (from mass constained fit)

 $\frac{\mathsf{D}_{s}^{*} \rightarrow \mathsf{D}_{s} \gamma}{\mathsf{D}_{s}^{*}}$ 

photons to Ds\* cannot come from z  $\pi^0$  which are defined as:

- 118 MeV < m(π<sup>0</sup>) < 150 MeV
- $E_{\gamma 1,2}$  > 50 MeV
- chi<sup>2</sup> < 50

Ds\* is prefered over Ds if:

- $E_{\gamma} > 130 \text{ MeV}$
- |m(D<sub>s</sub>\*)-m(D<sub>s</sub>)-0.1438|<13 MeV (mass diff.)

## $E\gamma$ cut optimization

MC generic (charged)

Mx distribution for  $D_s$  and  $D_s^*$  fitted simultaneously for mx<2.2 GeV





Determination of the shape parameters for (BCKG, MBC, MDS, SIG) comp. in a wide regions of mx





 $D_{s} \rightarrow \phi \pi$  $D_{s} \rightarrow K^{*0}K$  $D_{s} \rightarrow K^{0}{}_{s}K$ 

# MCgen: 1D-FITs vs 2D-FITs







 $\begin{array}{c}
 D_{s} \rightarrow \phi \pi \\
 D_{s} \rightarrow K^{*0}K \\
 D_{s} \rightarrow K^{0}{}_{s}K
\end{array}$ 

## 1D-Fit results for DATA and MCgen scaled



 $\mathsf{D}_{\mathsf{s}}$ 

 $\mathsf{D}_{\mathsf{s}}^*$ 

# Strategy for DATA



Possible strategy:

- use background shapes obtained from Fits2D
- Scale them by SF<sub>data</sub> coefficients
- Fix them in the fit to data

• ....

3.2

mx

Fit2D

#### **Systematics**

1000 fits for the whole MCgen sample with shape parameters' variation for  $D^0$  i  $D^{*0}$ :

- width2/width1 (!!)
- frac

(results for D<sub>s</sub> reconstruction only)





. . .



