e^+e^- low energy calculations with muons and pions

Janusz Gluza (U. of Silesia in Katowice)

Joint IJCLAB -IFJ PAN Heavy Flavour meeting

12-13 November 2024, Cracow

PHOKHARA MC generator

http://ific.uv.es/~rodrigo/phokhara , http://czyz.phys.us.edu.pl/czyz/ "Standard model radiative corrections in the pion form factor measurements do not explain the a_{μ} anomaly", F. Campanario et al, PRD100,076004(2019)

Phokhara, status

	PHOKHARA radiative return at flavour factories			
Physics	Electron-positron annihilation into hadrons plus an energetic photon from initial state radiation (ISR) allows the hadronic cross- section to be measured over a wide range of energies at high luminosity flavour factories [DAPINE, CESR, PEP-II, KEKB, Super-KEKB, BESIII].			
Content	PHOKHARA is a Monte Carlo event generator which simulates this process at the next-to-leading order (NLO) accuracy. This includes virtual and soft photon corrections to one photon emission events and the emission of two real hard photons.			
Downloads	VERSION 10.0 (October 2020): Includes complete NLO radiative corrections for the extraction of the pion form factor . The	I		
	new implementation is described in detail in Phys. Rev. D100 (2019) no.7, 076004 [arXiv:1903.10197 hep-ph].		Forthcoming features	ł
	 manual [PDF], source [.tar.gz] 			

 $\rm http://ific.uv.es/{\sim}rodrigo/phokhara$

The muon pair production with real photon emission $e^+e^- \rightarrow \mu^+\mu^-\gamma$ is an important background and normalization reaction in the measurement of the pion form-factor:

$$R_{exp} = \frac{\sigma(e^+e^- \to \pi\pi\gamma)}{\sigma(e^+e^- \to \mu^+\mu^-\gamma)}$$

which is necessary for an accurate determination of the anomalous magnetic moment of the muon $(g-2)_{\mu},$

KLOE-2 uses both Bhabha and muon pair normalizations, Babar only radiative return

So, to discuss here e^+e^- with:

- \longrightarrow muons
- \longrightarrow pions
- $\longrightarrow [\mathsf{Bhabha}]$

Based on

- Pion pair production with higher order radiative corrections in low energy e⁺e⁻ collisions, Eur.Phys.J.C 24 (2002) 51 https://arxiv.org/abs/hep-ph/0107154
- Measuring the FSR inclusive π⁺π⁻ cross-section, Eur.Phys.J.C 28 (2003) 261-278 https://arxiv.org/abs/hep-ph/0212386
- NNLO leptonic and hadronic corrections to Bhabha scattering and luminosity monitoring at meson factories, JHEP 07 (2011) 126 https://arxiv.org/abs/1106.3178
- Complete QED NLO contributions to the reaction e⁺e[→]μ⁺μ⁻γ and their implementation in the event generator PHOKHARA, JHEP 02 (2014) 114 https://arxiv.org/abs/1312.3610
- Standard model radiative corrections in the pion form factor measurements do not explain the a_µ anomaly, Phys.Rev.D 100 (2019) 7, 076004 https://arxiv.org/abs/1903.10197

Additional material:

- Radiative Corrections to Hadron Production in e^+e Annihilations at DA Φ NE Energies, Axel Hoefer, PhD thesis, link
- Working Group on Rad. Corrections and MC Generators for Low Energies, link: https://www.lnf.infn.it/wg/sighad/

Some Phokhara MC related materials also at http://czyz.phys.us.edu.pl/czyz/

 $\sigma(e^+e^- \to {\rm hadrons})$ data to evaluate hadronic shift to $\alpha(s)$ and g-2

\longrightarrow Precision tests of the Standard Model

Running $\alpha(s)$ determined by photon self energy contributions:

 $\Delta \alpha_{had}(s) \longrightarrow$ non-perturbative QCD contributions \Longrightarrow not calculable within perturbation theory \Longrightarrow experimental input is needed

$\alpha_{QED}(s)$, vacuum polarisation

F. Jegerlehner, http://dx.doi.org/10.23731/CYRM-2020-003.9

The effective $\alpha(s)$ in terms of the photon vacuum polarization (VP) self-energy correction $\Delta\alpha(s)$ by

$$\alpha(s) = \frac{\alpha}{1 - \Delta\alpha(s)} ; \ \Delta\alpha(s) = \Delta\alpha_{\rm lep}(s) + \Delta\alpha_{\rm had}^{(5)}(s) + \Delta\alpha_{\rm top}(s) .$$

R-data evaluation of $\alpha(s)$

$$\alpha(s) = \frac{\alpha}{1 - \Delta\alpha(s)}; \quad \Delta\alpha(s) = \Delta\alpha_{\rm lep}(s) + \Delta\alpha_{\rm had}^{(5)}(s) + \Delta\alpha_{\rm top}(s).$$

The non-perturbative hadronic piece from the five light quarks $\Delta \alpha_{\rm had}^{(5)}(s) = -\left(\Pi_{\gamma}'(s) - \Pi_{\gamma}'(0)\right)_{\rm had}^{(5)}$ can be evaluated in terms of $\sigma(e^+e^- \to {\rm hadrons})$ data via the dispersion integral (s can be any, also negative!)

$$\begin{aligned} \Delta \alpha_{\rm had}^{(5)}(s) &= -\frac{\alpha}{3\pi} \left(\int_{m_{\pi_0}^2}^{E_{\rm cut}^2} {\rm d}s' \; \frac{{\rm R}_{\gamma}^{\rm data}(s')}{s'(s'-s)} + \int_{E_{\rm cut}^2}^{\infty} {\rm d}s' \; \frac{{\rm R}_{\gamma}^{\rm pQCD}(s')}{s'(s'-s)} \right), \\ a_{\mu}^{\rm had} &= \left(\frac{\alpha m_{\mu}}{3\pi} \right)^2 \int_{4m_{\pi}^2}^{\infty} {\rm d}s \; \frac{R(s) \; \hat{K}(s)}{s^2} \; , \hat{K}(s) \in 0.63 \div 1. \\ R_{\gamma}(s) &\equiv \sigma^{(0)}(\mathbf{e}^+ \mathbf{e}^- \to \gamma^* \to {\rm hadrons}) / \left(\frac{4\pi \alpha^2}{3s} \right) \end{aligned}$$

Janusz Gluza

Davier et al

The compilation of R(s)-data utilized by F. Jegerlehner for $\Delta \alpha_{had}$.

Nontrivial contributions from different energy regions for a_{μ}^{had} and $\Delta \alpha_{had}^{(5)}(M_Z^2)$

A piece of low energy mess: $\rho - \omega$

The low energy tail of R is provided by $\pi^+\pi^-$ production data.

$$R(s) = \frac{1}{4} \beta_{\pi}^{3} |F_{\pi}^{(0)}(s)|^{2}, \ \beta_{\pi} = (1 - 4m_{\pi}^{2}/s)^{1/2}$$

- $\sigma_{had}^{(0)}(s)$ is a pseudo observable: can be extracted from e^+e^- data only via some theoretical input
- Observed data are dressed by radiative corrections
 → Require undressing

- Photon self energy: to be subtracted to avoid double counting [multiplication with $(\alpha(0)/\alpha(s))^2$]
- ISR: Photonic corrections up to leading log $O(\alpha^3)$, leading + subleading IS e^+e^- -pair production
- **FSR**: **not** known \rightarrow Model (e.g. sQED)
- \implies Extraction of $\sigma_{had}^{(0)}(s)$ is **model dependent**
- Consider channel $e^+e^- \rightarrow \pi^+\pi^-$:

$$\sigma_{\pi\pi}(s) = \sigma_{\pi\pi}^{\text{point}}(s) |F_{\pi}(s)|^2 = \frac{\pi \alpha^2 \beta_{\pi}^3}{3 s} |F_{\pi}(s)|^2$$

• Parameterization: Scalar QED modified by Pion Form Factor : Only correct to lowest order 1. π^{\pm} are composite particles for which photonic radiation mechanism is not precisely known.

 \longrightarrow Model Dependence

- 2. Intermediate hadronic composite state (mainly ρ, ω) can be probed by sufficiently hard photons.
- On the other hand

— for sufficiently soft photons the intermediate state is neutral and pions are "elementary" scalar particles (factorization)

– radiative corrections are dominated by ISR

• Question:

How can we extract $\sigma_{\pi\pi}^{(0)}$ or even better $\sigma_{\pi\pi}^{(\gamma)}$ (= FSRinclusive cross section) from experimental data with a minimum of model assumptions?

Scan Measurement:

Measurement of the total cross section $\sigma_{obs}(s) = "\sigma^{(0)}(s) + rad. corr."$

• Exclusive Scenario:

data selection (hard cuts) such that pions are back-to-back

 \implies phase space left only for soft real photons

- $\, \delta_{\rm soft}$ is theoretically known (universal) and can be "subtracted"
- But: hard virtual FSR corrections are unknown!
- $\longrightarrow 2$ possibilities:
 - 1. subtract virtual FSR corrections $\rightarrow \sigma^{(0)}(s)$ 2. add real FSR corrections $\rightarrow \sigma^{(\gamma)}(s)$
- → For both possibilities ad hoc models (like sQED) are needed!

 $\implies \text{Neither } \sigma^{(0)} \text{ nor } \sigma^{(\gamma)} \text{ can be obtained in a model independent way!}$

 \longrightarrow model error estimation within sQED: O(1%).

• Inclusive Scenario:

photon-inclusive measurement:

- "subtract" only ISR to obtain $\sigma_{had}^{(\gamma)}$

- neutral current process → decomposition into 2 separately gauge invariant, Lorentz covariant Tensors
- → formal phase space integration \implies ISR \otimes FSR-factorization²:

$$\sigma_{
m obs}(s) = - ds_V \, \sigma^{(\gamma)}(s_V) \,
ho_{
m ini}^{
m incl}(s,s_V) + O(lpha^2)_{
m IFS}$$

- proof included summation over all orders (factorization hard to see to given perturbative order)
- s_V : not observable (formal integration variable) but boundaries (e.g. $4m_\pi^2 ≤ s_V ≤ s$) are!
- $\implies \text{from the measured } \sigma_{\rm obs} \text{ and the theoretically known} \\ \rho_{\rm ini}^{\rm incl}(s, s_V) \implies \sigma^{(\gamma)}(s_V)$
- \longrightarrow best fit to data by choosing suitable parameterization for $\sigma^{(\gamma)}(s_V)$ (e.g. MINUIT package)
- no $O(\alpha)$ IFS (C-invariance)
- $O(\alpha^2)$ IFS: per mill level (no leading log's)

²hep-ph/0212386 (J. Gluza, A. Hoefer, S. Jadach, F. Jegerlehner)

- in real experiments: kinematical cuts \implies ISR \otimes FSR breaking at $O(\alpha)$
- model error is small only if ISR
 SFSR is broken slightly by cuts

 \implies Try to be as photon–inclusive as possible

• angular cuts: $\theta_{\pi} \geq \theta_{\pi}^{\min}$

 \longrightarrow test model error due to ISR \otimes FSR breaking within sQED:

$$\begin{split} \sigma_{obs}^{cut}(s) &= \sigma_{out}^{(\gamma)}(s) \left[1 + \delta_{im}(s, \Lambda)\right] \\ &+ \int_{4m_{\pi}^{2}}^{s-2\sqrt{s}\Lambda} ds_{V} \ \sigma_{cut}^{(\gamma)}(s_{V}) \ \rho_{imi}^{cut}(s, s_{V}) - \delta_{cut}^{vau}(s) \\ \delta_{cut}^{vau}(s) &= \sigma_{cut}^{(0)}(s) \ \frac{\alpha}{\pi} \left\{\eta(s) - \eta_{eut}(s)\right\} + O(\alpha^{2}) \\ \sigma_{cut}^{(\eta)}(s) &= |F_{\pi}^{(\gamma)}(s)|^{2} \ \sigma_{cut}^{a,point}(s) \end{split}$$

- $\eta_{(\text{cut})}(s)$: integrated $O(\alpha)$ FSR
- extract |F^(γ)_π(s)|² → σ^(γ)(s) from data, once includir and once excluding δ^{cut}_{cut}(s) [σ^(γ)(s) vs. σ^(γ)(s)]

data fitting with MINUIT

 \rightarrow

 \implies model error estimate by comparison:

$$\Delta_{ ext{cut}}^{ ext{scan}}(s) \ = \ rac{\sigma_{ ext{cut}}^{(\gamma)}(s) - \hat{\sigma}_{ ext{cut}}^{(\gamma)}(s)}{\sigma_{ ext{cut}}^{(\gamma)}(s)}$$

– model error is small for $\sigma^{(\gamma)}$ extraction. – test of sQED by comparison with excl. scenario

JG: ready for tests/comparisons ISR/FSR: files in fortran, + NAG, Vegas, ...

FF=gfortran
FFLAGS=.m32
#-m32
#LIBS = /products/naglib/libnag.a
%.o: %.f
\$(FF) \$(FFLAGS) -c -o \$@ \$<
SOURCEs-vegas7.f random.f cseepipi.f kincseepipi.f formkuehn.f elast.f \
intl.f intlneg.f
OBJECTS2=vegas7.o random.o main.o kinematic.o formkuehn.o elast.o hard.o
#LIBS= /products/naglib/libnag.a
new: vegas7.o random.o main.o kinematic.o formkuehn.o elast.o hard.o
\$(FF) \$(FFLAGS) - o csew - 0 \$(OBJECTS2)\$)</pre>

Radiative Corrections to Hadron Production in e^+e Annihilations at DA Φ NE Energies, Axel Hoefer, PhD thesis, link

Radiative Return Measurement:

e.g. Φ factory like $\mathsf{DA}\Phi\mathsf{NE}$ or B–factories like <code>BARBAR</code>

- e^+e^- collision energy \sqrt{s} is fixed
- measurement of spectral function $d\sigma/ds'~(s'=M_{\rm had}^2)$ (radiative return due to ISR)

 \longrightarrow obtain $\sigma^{(0)}$ or $\sigma^{(\gamma)}$ from data

• Question: why not take $d\sigma/ds_V$ to obtain $\sigma^{(\gamma)}(s_V)$ via

$$\frac{d\sigma_{\rm incl}}{ds_V} = \sigma^{(\gamma)}(s_V) \,\rho_{\rm ini}^{\rm incl}(s,s_V) + O(\alpha^2)_{\rm IFS}$$

 Problem: already to leading order s_V = s' for ISR but s_V = s for FSR (s_V is not observable!)

- \implies error one would make by identifying s_V with s': O(1) FSR
- \longrightarrow FSR O(1) contribution is background \longrightarrow has to be subtracted!
- model error analysis within modified sQED (sQED × $|F_{\pi}|^2$) \rightarrow factorization of FSR

Basic conclusions

- accurate treatment of FSR in low energy σ_{had} measurements is crucial
 - \longrightarrow photon self energy $\longrightarrow \alpha(s), a_{\mu}^{\text{had}}$
- advocate FSR-inclusive measurement at scan experiments \longrightarrow only way to obtain $\sigma^{(\gamma)}$ with acceptable model error
- Excl. Scan and Rad. Ret. : neither $\sigma^{(\gamma)}$ nor $\sigma^{(0)}$ without ad hoc model assumptions
- Radiative return measurements suffer from O(1) FSR background

→ unsurmountable problem for $\pi\pi$ measurements at Φ factories at $\sqrt{s'} \le 0.5$ GeV

• new model independent approach for treating FSR is desirable, especially to controll O(1) FSR background \longrightarrow cross-check scan and τ -decay data

$e^+e^- \rightarrow \pi^+\pi^-$, motivation for further improvements

The biggest difference between KLOE and BABAR measurements, amounts there to about 2%. It goes even up to 10% around the narrow ω resonance For higher $\pi^+\pi^-$ invariant masses (at 0.9 GeV) the difference raises to 5%.

"Standard model radiative corrections in the pion form factor measurements do not explain the a_{μ} anomaly", F. Campanario et al, PRD100,076004(2019) sQED + form factors: FSR at NLO and pentaboxes tested and implemented to Phokhara10.0

Available at: http://ific.uv.es/~rodrigo/phokhara

JG: ready for tests/comparisons

eepipi-1-SM-QED.nb - Wolfra	m Mathematica 12.3	n #1
Insert Format Cell Graphics Evaluation Palettes Window Help	🗉 gluza@gluzaX1: -/calculations/EEPiPiGamma/JG/pipigamma 🔍 🗏 💷 🛞	
<pre>Get["-/Dropbox/eepipi/eepipi-1-SM-QED/eepipi-1-SM-QED.m"]</pre>		alu × 🗸
FeynArts 3.9 by Hagen Eck, Sepp Kueblbeck, and Thomas Hahn last revised 2 Dec 14 FormCait 8.4 by Thomas Hahn last revised 30 Mar 15 e+ e- > p1+ p1- A, tree-level		glu glu<
Jandian annais andal fila (llana (tial) (Daashay (TEUS (mash / anfinana (fa		box.ps penta.ps triangle.ps
Coacing generic indec file / users/cjec/bropbox/1P03/work/_sortware/re	ynarics/reynarics-3.9/	gluza@gluzaX1:~/calculations/EEPiPiGanma/JG/pipiganmaS gv eepipiA-1-SM-QED/eepipiA-1
> somericking is or		<pre>gluza@gluza%1:~/calculations/EEPiPiGanma/JG/pipiganma% gv eepipiA-1-SN-QED/eepipiA-1</pre>
loading classes model file /Users/tjel/Dropbox/eepipi/pions-SM-QED.m loading classes model file /Users/tjel/Dropbox/eepipi/SM-QED.mod \$CKM = False	gy: /home/gluza/calculatic File State Pag Variable Store Open Print All	tionyEEPIPKGamma/JG/pipigamma/eepipka-15M-QED/eepipka-15M-QED/eepipka-15M-QED/eepipka-15M-QED/eepipka-15M-QED/e ge: Portrait 1.000 y792x512 //toome/guzakkalulations/EEPIPKGamma/UG/pipigamm D 20151208
<pre>> 48 particles (incl. antiparticles) in 17 classes > 5CounterTerms are ON > 90 vertles > 118 counter terms of order 1 > 6 counter terms of order 2 classes model (-/Drobox/ceofo1/ofons-SH-OED) initialized tur=co(tur=c)(tur=c)(tur=ng(mm)- 192 g² MW²</pre>	Print Marked Seve All Seve Marked C <c>>> Reload</c>	

NLO pentabox corrections, results for KLOE, BABAR and BESS

- Missing NLO radiative corrections cannot be the source of the discrepancies between the different extractions of the pion form factor performed by BaBar, BES and KLOE.
- They cannot be the origin of the discrepancy between the experimental measurement and the SM prediction of a_{μ} (too small).

 $e^+e^- \rightarrow \mu^+\mu^-\gamma$ process

F. Campanario, H. Czyż , JG, M. Gunia, T. Riemann, G. Rodrigo, V. Yundin Complete QED NLO contributions to the reaction $e^+e^{\rightarrow}\mu^+\mu^-\gamma$ and their implementation in the event generator PHOKHARA, JHEP 02 (2014) 114 https://arxiv.org/abs/1312.3610

 $e^+e^- \rightarrow \mu^+\mu^-\gamma$ — ideal benchmark process for massive tensor reduction

- Two different masses
- Large difference of scales (up to 7 orders in magnitude)
- Quasi-collinear region (due to small electron mass)
- Small number of diagrams

 $e^+e^- \rightarrow \mu^+\mu^-\gamma$

- Diagram generation with DIANA [Tentyukov, Fleischer]
- Algebraic processing in FORM [Vermaseren]
- Tensor reduction PJFry [Yundin]
- Scalar integrals OneLOop [van Hameren]
- Monte-Carlo PHOKHARA [Rodrigo, Czyż, Kühn]

Compact result for squared one loop amplitude ($\sim 3 \text{ ms per point}$).

 $e^+e^- \rightarrow \mu^+\mu^-\gamma$

Monte-Carlo integration as a stability test Two realistic sets of kinematical cuts

	BaBar	KLOE
Ecms	10.56 GeV	1.02 GeV
$E_{\gamma,\min}$	3 GeV	0.02 GeV
θ_{γ}	$20^{\circ}-138^{\circ}$	0°–15°, 165°–180°
Q^2	0.25 – 50 GeV^2	$0.25 1.06 \text{ GeV}^2$
$\theta_{\mu^{\pm}}$	$40^{\circ}-140^{\circ}$	$50^{\circ}-130^{\circ}$

$$m_e = 0.5109989 \cdot 10^{-3} \text{ GeV}, \ m_\mu = 0.105658367 \text{ GeV},$$

 $\alpha(0) = 1/137.03599968.$

Phase-space cuts for KLOE and BaBar settings. Q^2 is the invariant mass squared of the muon pair.

 $e^+e^- \rightarrow \mu^+\mu^-\gamma$ KLOE Q^2

FSR gauge invariance between tree diagrams (upper picture), and gauge invariance among four and five point one-loop integrals (below). Here diagrams were limited to FSR cases, the same property is present for ISR amplitudes. Trace and Quadrupole (helicity method) precision - pentagons, Gram determinants.

JG, Radcor 2011 talk. Theoretical improvements for luminosity monitoring at low energies ${\sf link}$

Complete NLO $e^+e^- \rightarrow \mu^+\mu^-\gamma$ KLOE Q^2

Phokhara - Relevance of NLO Penta-Box contributions

KKMC-ee, Phokhara, ...

Staszek Jadach e-Print: hep-ph/0506180 [hep-ph]

Fig. 1. Muon pair mass (square) spectrum in case of ISR only. $\sqrt{s} = 1.01942$ GeV.

Agreement to within 0.3% with KKMC.

Phokhara has no exponentiation, difference for high Q²

"Measurement of additional radiation in the initial-state-radiation processes $e^+e^- \to \mu^+\mu^-\gamma$ and $e^+e^- \to \pi^+\pi^-\gamma$ at BABAR"

Category	$\mu\mu$	ππ			
	$m_{\pi\pi} < 1.4 \mathrm{GeV}/c^2$	$0.6 < m_{\pi\pi} < 0.9 \text{GeV}/c^2$			
LO	0.7716(4)(14)	0.7839(5)(12)			
NLO SA-ISR	0.1469(3)(36)	0.1401(2)(16)			
NLO LA-ISR	0.0340(2)(9)	0.0338(2)(9)			
NLO ISR	0.1809(4)(35)	0.1739(3)(20)			
NLO FSR	0.0137(2)(7)	0.0100(1)(16)			
NNLO ISR a	0.0309(2)(38)	0.0310(2)(39)			
NNLO FSR ^b	0.00275(6)(9)	0.00194(12)(50)			
NNLO 2LA c	0.00103(3)(1)	0.00066(4)(4)			
^a NNLO ISR = 2SA-ISR or SA-ISR + LA-ISR					
b NNLO FSR = SA-ISR + LA-FSR					

 $^c{\rm NNLO}$ 2LA = 2LA-ISR, LA-ISR + LA-FSR or 2LA-FSR

NNLO effects visible.

Comparisons with Phokhara, however

- The event selections used in arXiv:2308.05233 require to have at least 2 hard photons in the final state
- ▶ The matrix elements in Phokhara for $e^+e^- \to \pi^+\pi^-\gamma\gamma$ and $e^+e^- \to \mu^+\mu^-\gamma\gamma$ are calculated at LO , so no surprise the accuracy is not high

CMD3, new $\pi^+\pi^-$ results, latice QCD, smaller tensions

CMD3: https://arxiv.org/abs/2302.08834

"The CMD-3 result reduces the tension between the experimental value of the a_{μ} and its Standard Model prediction."

- Precision goals for SM theory high-energy studies at present and future colliders need progress in precision low energy input, e.g. α(s).
- Development of MC generators for low-energy studies is needed (e.g. ISR with 3 photons).
- Along with, inclusion of h.o. corrections, modeling hadron interactions.

Thank you for your attention.

▶ Precise calculations of higher order corrections for the process of Bhabha scattering $(e^+e^- \rightarrow e^+e^-)$ are necessary for determine colliders luminosity with high accuracy.

$$L_{tot} = \frac{N}{\sigma_{theory}}$$

► High accuracy of luminosity in low energy region is necessary to research low energy hadron cross section from e + e- annihilation process.

$$\sigma_{had} = \frac{N_{had}}{L_{tot}}$$

Carloni Calame, H. Czyz, JG, M. Gunia , G. Montagna, O. Nicrosini, F. Piccinini, T. Riemann, M. Worek,

NNLO leptonic and hadronic corrections to Bhabha scattering and luminosity monitoring at meson factories, JHEP 07 (2011) 126 https://arxiv.org/abs/1106.3178

Aim of the work: calculations at NNLO

 NNLO virtual corrections linked with real corrections and realistic experimental cuts for low energy machines:
 Φ factory Dafne at Frascati, B factories PEP-II (SLAC) and Belle (KEK) and at the charm/τ factory BEPC II, Beijing

 calculation of virtual corrections: package bha_nnlo_hf: Actis, Czakon, JG, Riemann calculation of real corrections: Monte Carlo generators EKHARA:, Czyż, Nowak BHAGHEN–1PH Czyż, Caffo Bhabha with additional pairs: HELAC–PHEGAS: Papadopoulos, Kanaki, Worek, Cafarella

comparison complete calculations with approximate ones realized in the MC generator BabaYaga: C.C.Calame, C. Lunardini, G. Montagna, O. Nicrosini, F. Piccinini

KKMC at low and high energies ... here low-energies

- BHLUMI v.4.04: Jadach, Placzek, Richter-Was, Was: CPC 1997
- NLLBHA: Arbuzov, Fadin, Kuraev, Lipatov, Merenkov, Trentadue: NPB 1997, CERN 96-01
- SAMBHA: Arbuzov, Haidt, Matteuzzi, Paganoni, Trentadue: hep-ph/0402211
- BabaYaga: Calame, Montagna, Nicrosini, Piccinini, http://www2.pv.infn.it/ hepc omplex/babayaga.html

BabaYaga is presently the main tool for luminosity at flavor factories. BHLUMI was a main tool at LEP.

Two regions where the Bhabha-scattering cross section is large and QED dominated

 $s = (p_1 + p_2)^2 = 4E^2 > 4m_e^2, \quad t = (p_1 - p_3)^2 = -4(E^2 - m_e^2)\sin^2\frac{\theta}{2} < 0$

√s ~ 10² GeV ⇒ small θ
 SABS ⇒ L at LEP, ...
 ~ a few degrees

 √s ~ 1-10 GeV ⇒ large θ
 LABS ⇒ L at KLOE, ... θ ~ 55⁰ − 125⁰

Ratio of electroweak to QED Bhabha scattering cross-section at large and

small angles as a function of CoM

$1.\Phi$ factories KLOE/DA Φ NE (Frascati)

(a) $\sqrt{s} = 1.02 \text{ GeV}$ (b) $E_{min} = 0.4 \text{ GeV}$ (c) For $\theta \pm$ two selections have to be checked i. tighter selection $55^{\circ} < \theta \pm < 125^{\circ}$ ii. wider selection $20^{\circ} < \theta \pm < 160^{\circ}$ (d) $\zeta_{max} = 4,5,6,7,8,...,14$ deg., with reference value $\zeta_{max} = 9^{\circ}$

2. B-factories BABAR/PEP-II (SLAC) & BELLE/KEKB (KEK)

(a) $\sqrt{s} = 10.56 \text{ GeV}$ (b) $|\vec{p}_+|/E_{beam} > 0.75 \text{ and } |\vec{p}_-|/E_{beam} > 0.50$ or $|\vec{p}_-|/E_{beam} > 0.75 \text{ and } |\vec{p}_+|/E_{beam} > 0.50$ (c) For $|\cos(\theta \pm)|$ the following selections have to be checked i. $|\cos(\theta \pm)| < 0.65 \text{ and } |\cos(\theta \pm)| < 0.60 \text{ or } |\cos(\theta -)| < 0.60$ ii. $|\cos(\theta \pm)| < 0.70 \text{ and } |\cos(\theta \pm)| < 0.65 \text{ or } |\cos(\theta -)| < 0.65$ iii. $|\cos(\theta \pm)| < 0.60 \text{ and } |\cos(\theta \pm)| < 0.55 \text{ or } |\cos(\theta -)| < 0.55$ (d) $\zeta_{max}^{3d} = 20,22,24,...,40 \text{ deg., with reference value } \zeta_{max}^{3d} = 30^{\circ}$ • the σ_{virt} consists of virtual two-loop corrections σ_{2L} and loop-by-loop corrections σ_{1L1L}

 \blacktriangleright contributions with real photon emission $\sigma_{\gamma}=\sigma_{\gamma,soft}(\omega)+\sigma_{\gamma,hard}(\omega)$

► contributions with real pair or hadron emission $\sigma_{real} = \sigma_{e^+e^-(e^+e^-)} + \sigma_{e^+e^-(f^+f^-)} + \sigma_{e^+e^-(hadrons)}$

Central reference cuts

	./s		σ	S .	S_{t} [10 ⁻³]	S	S
	V 8		0	0 _{e+e} -	Diep[10]	Dhad	Dtot
KLOE	1.020	NNLO		-3.935(4)	-4.472(4)	1.02(2)	-3.45(2)
		BY_{NLO}	455.71	-3.445(2)	-4.001(2)	0.876(5)	-3.126(5)
BES	3.097	NNLO		-2.246(8)	-2.771(8)	-	-
		BY_{NLO}	158.23	-2.019(3)	-2.548(3)	-	-
BES	3.650	NNLO		-1.469(9)	-1.913(9)	-1.3(1)	-3.2(1)
		BY_{NLO}	116.41	-1.521(4)	-1.971(4)	-1.071(4)	-3.042(5)
BES	3.686	NNLO		-1.435(8)	-1.873(8)	-	-
		BY_{NLO}	114.27	-1.502(4)	-1.947(4)	-	-
BaBar	10.56	NNLO		-1.48(2)	-2.17(2)	-1.69(8)	-3.86(8)
		BY_{NLO}	5.195	-1.40(1)	-2.09(1)	-1.49(1)	-3.58(2)
Belle	10.58	NNLO		-4.93(2)	-6.84(2)	-4.1(1)	-10.9(1)
		BY_{NLO}	5.501	-4.42(1)	-6.38(1)	-3.86(1)	-10.24(2)

The σ is the cross section in nb from BabaYaga(at)NLO, and $S_x = \frac{\sigma_x}{\sigma}$ in per-milles with $x = e^+e^-$, lep, tot, where tot stands for leptonic (lep) + hadronic corrections.

The vacuum polarisation function:

$$\Pi(q^2) = \frac{\alpha q^2}{3\pi} \int_{m_{\Pi 0}^2}^{\inf} \frac{dz}{z} \frac{R(z)}{q^2 - z + i\epsilon}$$

For leptons VP analytical expressions were used. For pions VP numerical calculations of the integral were used.

For hadrons program VPHLMNT (T.Teubner et all.) was used.

resonance	$M_{\rm res}~[{\rm GeV}]$	$\Gamma^{e^+e^-}_{ m res}$ [keV]
$J/\psi(1S)$	3.096916	5.55
ψ(2S)	3.686093	2.33
Ύ(1S)	9.46030	1.34
Ύ(2S)	10.02326	0.612
Ύ(3S)	10.3552	0.443
Ύ(4S)	10.5794	0.272
Υ(5S)	10.865	0.31
Υ(6S)	11.019	0.13

	\sqrt{s}	$\sigma_{\rm rest,res}$	$\sigma_{\rm rest, res'}$	σ_B
KLOE	1.020	[all n.r.]	[n.r. without $J/\psi(1S)$]	
		-0.04538	-0.0096	529.5
BES	3.097	[all n.r.]	[n.r. without $J/\psi(1S)$]	
		228.08	-0.0258	14.75
BES	3.650	[all n.r.]	[n.r. without $\psi(2S)$]	
		-0.1907	-0.023668	123.94
BES	3.686	[all n.r.]	[n.r. without $\psi(2S)$]	
		-62.537	-0.0254	121.53
BaBar	10.56	[all n.r.]	[n.r. without Υ(4S)]	
		-0.0163	-0.01438	6.744
Belle	10.58	[all n.r.]	[n.r. without Υ(4S)]	
		0.04393	-0.0137	6.331

$$R_{res}(z) = \frac{9\pi}{\alpha^2} M_{res} \Gamma_{res}^{e^+e^-} \delta(z - M_{res}^2) \,.$$

$$\frac{d\sigma_{\rm rest}}{d\Omega} = \frac{9\alpha^2}{\pi s} \frac{\Gamma_{\rm res}^{e^+e^-}}{M_{\rm res}} \left\{ \frac{F_1(M_{\rm res}^2)}{t - M_{\rm res}^2} + \frac{1}{s - M_{\rm res}^2} \left[F_2(M_{\rm res}^2) + F_3(M_{\rm res}^2) \ln \left| 1 - \frac{M_{\rm res}^2}{s} \right| \right] \right\}$$

Adaptive VEGAS is able to identify narrow resonances!

NNLO conclusions for meson factories Bhabha scattering

Pions approximation is not enough.

 Exact calculations of NNLO massive corrections to Bhabha scattering were presented.

▶ The theoretical accuracy of the generator BABAYAGA@NLO was tested. For reference realistic event selections the maximum observed difference is at the level of 0.07%. When cuts are varied the sum of the missing pieces can reach 0.1%, but for very tight acollinearity cuts only.

- Stability of the results with changing of the event selections was examined - there aren't dramatical changes of errors between points with real experimental cuts and their neighbours.
- NNLO massive corrections are relevant for precision luminosity measurements with 10⁻³ accuracy. The electron pair contribution is the largely dominant part of the correction. The muon pair and hadronic corrections are the next-to-important effects and quantitatively on the same grounds. The tau pair contribution is negligible for the energies of meson factories.