e^+e^- [low energy calculations](https://indico.cern.ch/event/1064327/) [with muons and pions](https://indico.cern.ch/event/1064327/)

Janusz Gluza (U. of Silesia in Katowice)

[Joint IJCLAB -IFJ PAN Heavy Flavour meeting](https://indico.ifj.edu.pl/event/1302/)

12–13 November 2024, Cracow

PHOKHARA MC generator

http://ific.uv.es/∼[rodrigo/phokhara](https://ific.uv.es/~rodrigo/phokhara) , <http://czyz.phys.us.edu.pl/czyz/>

"Standard model radiative corrections in the pion form factor measurements do not explain the a_{μ} anomaly", F. Campanario et al, [PRD100,076004\(2019\)](https://inspirehep.net/literature/1726528)

Phokhara, status

http://ific.uv.es/∼[rodrigo/phokhara](https://ific.uv.es/~rodrigo/phokhara)

The muon pair production with real photon emission $e^+e^- \to \mu^+\mu^-\gamma$ is an important background and normalization reaction in the measurement of the pion form-factor:

$$
R_{exp} = \frac{\sigma(e^+e^- \to \pi\pi\gamma)}{\sigma(e^+e^- \to \mu^+\mu^-\gamma)}
$$

which is necessary for an accurate determination of the anomalous magnetic moment of the muon $(g-2)_{\mu}$,

KLOE-2 uses both Bhabha and muon pair normalizations, Babar only radiative return

So, to discuss here e^+e^- with:

- \longrightarrow muons
- \longrightarrow pions
- −→ [Bhabha]

Based on

- ▶ Pion pair production with higher order radiative corrections in low energy e^+e^- collisions, Eur.Phys.J.C 24 (2002) 51 <https://arxiv.org/abs/hep-ph/0107154>
- A Measuring the FSR inclusive $\pi^+\pi^-$ cross-section, Eur.Phys.J.C 28 (2003) 261-278 <https://arxiv.org/abs/hep-ph/0212386>
- ▶ NNLO leptonic and hadronic corrections to Bhabha scattering and luminosity monitoring at meson factories, JHEP 07 (2011) 126 <https://arxiv.org/abs/1106.3178>
- ▶ Complete QED NLO contributions to the reaction $e^+e^{\rightarrow} \mu^+ \mu^- \gamma$ and their implementation in the event generator PHOKHARA, JHEP 02 (2014) 114 <https://arxiv.org/abs/1312.3610>
- Standard model radiative corrections in the pion form factor measurements do not explain the a_{μ} anomaly, Phys.Rev.D 100 (2019) 7, 076004 <https://arxiv.org/abs/1903.10197>

Additional material:

- Radiative Corrections to Hadron Production in e^+e Annihilations at DA Φ NE Energies, Axel Hoefer, PhD thesis, [link](https://www.researchgate.net/publication/279829666_Radiative_corrections_to_hadron_production_in_ee-_annihilations_at_DAPhiNE_energies)
- Working Group on Rad. Corrections and MC Generators for Low Energies, link: <https://www.lnf.infn.it/wg/sighad/>

[Some Phokhara MC related materials also at http://czyz.phys.us.edu.pl/czyz/](http://czyz.phys.us.edu.pl/czyz/)

 $\sigma(e^+e^-\to\mathrm{hadrons})$ data to evaluate hadronic shift to $\alpha(s)$ and $g-2$

\rightarrow Precision tests of the Standard Model

Running $\alpha(s)$ determined by photon self energy contributions:

 $\Delta\alpha_{\rm had}(s) \longrightarrow$ non–perturbative QCD contributions \Longrightarrow not calculable within perturbation theory \implies experimental input is needed

$\alpha_{QED}(s)$, vacuum polarisation

F. Jegerlehner, <http://dx.doi.org/10.23731/CYRM-2020-003.9>

The effective $\alpha(s)$ in terms of the photon vacuum polarization (VP) self-energy correction $\Delta \alpha(s)$ by

$$
\alpha(s) = \frac{\alpha}{1 - \Delta\alpha(s)} \; ; \; \; \Delta\alpha(s) = \Delta\alpha_{\text{lep}}(s) + \Delta\alpha_{\text{had}}^{(5)}(s) + \Delta\alpha_{\text{top}}(s) \, .
$$

R-data evaluation of $\alpha(s)$

$$
\alpha(s) = \frac{\alpha}{1 - \Delta\alpha(s)}; \quad \Delta\alpha(s) = \Delta\alpha_{\text{lep}}(s) + \Delta\alpha_{\text{had}}^{(5)}(s) + \Delta\alpha_{\text{top}}(s).
$$

The non-perturbative hadronic piece from the five light quarks $\Delta\alpha_{\rm had}^{(5)}(s)=-\left(\Pi_\gamma'(s)-\Pi_\gamma'(0)\right)_{\rm had}^{(5)}$ can be evaluated in terms of $\sigma(e^+e^-\to{\rm hadrons})$ data wia the dispersion integral (s can be any, also negative!)

$$
\Delta \alpha_{\rm had}^{(5)}(s) = -\frac{\alpha s}{3\pi} \left(\int_{m_{\pi_0}^2}^{E_{\rm cut}^2} ds' \frac{R_{\gamma}^{\rm data}(s')}{s'(s'-s)} + \int_{E_{\rm cut}^2}^{\infty} ds' \frac{R_{\gamma}^{\rm PQCD}(s')}{s'(s'-s)} \right),
$$

\n
$$
a_{\mu}^{\rm had} = \left(\frac{\alpha m_{\mu}}{3\pi} \right)^2 \int_{4m_{\pi}^2}^{\infty} ds \frac{R(s) \hat{K}(s)}{s^2} , \hat{K}(s) \in 0.63 \div 1.
$$

\n
$$
R_{\gamma}(s) \equiv \sigma^{(0)}(e^+e^- \rightarrow \gamma^* \rightarrow \text{hadrons}) / \left(\frac{4\pi \alpha^2}{3s} \right)
$$

The compilation of $R(s)$ -data utilized by F. Jegerlehner for $\Delta\alpha_{\rm had}$.

Nontrivial contributions from different energy regions for $a_{\mu}^{\rm had}$ and $\Delta\alpha_{\rm had}^{(5)}(M_Z^2)$

A piece of low energy mess: $\rho - \omega$

The low energy tail of R is provided by $\pi^+\pi^-$ production data.

$$
R(s) = \frac{1}{4} \beta_{\pi}^{3} |F_{\pi}^{(0)}(s)|^{2}, \ \beta_{\pi} = (1 - 4m_{\pi}^{2}/s)^{1/2}
$$

- \bullet $\sigma_{\text{had}}^{(0)}(s)$ is a pseudo observable: can be extracted from e^+e^- data only via some theoretical input
- Observed data are dressed by radiative corrections Require undressing

- Photon self energy: to be subtracted to avoid double counting [multiplication with $(\alpha(0)/\alpha(s))^2$]
- ISR: Photonic corrections up to leading $O(\alpha^3)$, leading + subleading IS e^+e^- -pair production
- $-$ **FSR**: **not** known \rightarrow Model (e.g. sQED)
- \Rightarrow Extraction of $\sigma_{\text{had}}^{(0)}(s)$ is **model dependent**
- Consider channel $e^+e^- \rightarrow \pi^+\pi^-$:

$$
\sigma_{\pi\pi}(s) = \sigma_{\pi\pi}^{\text{point}}(s) |F_{\pi}(s)|^2 = \frac{\pi \alpha^2 \beta_{\pi}^3}{3} |F_{\pi}(s)|^2
$$

• Parameterization: Scalar QED modified by Pion Form Factor: Only correct to lowest order

1. π^{\pm} are composite particles for which photonic radiation mechanism is not precisely known.

 \longrightarrow Model Dependence

- 2. Intermediate hadronic composite state (mainly ρ, ω) can be probed by sufficiently hard photons.
- \bullet On the other hand

for sufficiently soft photons the intermediate state is neutral and pions are "elementary" scalar particles (factorization)

radiative corrections are dominated by ISR

\bullet Question:

How can we extract $\sigma_{\pi\pi}^{(0)}$ or even better $\sigma_{\pi\pi}^{(\gamma)}$ (= FSRinclusive cross section) from experimental data with a minimum of model assumptions?

Scan Measurement:

Measurement of the total cross section $\sigma_{\rm obs}(s) = \sigma^{(0)}(s) + \text{rad. corr.}$ "

• Exclusive Scenario:

data selection (hard cuts) such that pions are hack-to-back

 \implies phase space left only for soft real photons

- $-\delta_{\text{soft}}$ is theoretically known (universal) and can be "subtracted"
- But: hard virtual FSR corrections are unknown!
- \longrightarrow 2 possibilities:
	- 1. subtract virtual FSR corrections $\rightarrow \sigma^{(0)}(s)$
	- 2. add real FSR corrections $\rightarrow \sigma^{(\gamma)}(s)$
- \longrightarrow For both possibilities ad hoc models (like sQED) are needed!
- \Rightarrow Neither $\sigma^{(0)}$ nor $\sigma^{(\gamma)}$ can be obtained in a model independent way!
- \longrightarrow model error estimation within sQED: $O(1\%)$.

• Inclusive Scenario:

photon-inclusive measurement:

"subtract" only ISR to obtain $\sigma_{\text{bad}}^{(\gamma)}$

- neutral current process \longrightarrow decomposition into 2 separately gauge invariant, Lorentz-covariant Tensors
- \rightarrow formal phase space integration \implies ISR \otimes FSR-factorization²:

$$
\sigma_{\rm obs}(s) = d s_V \sigma^{(\gamma)}(s_V) \rho_{\rm ini}^{\rm incl}(s,s_V) + O(\alpha^2)_{\rm IFS}
$$

- proof included summation over all orders (factorization hard to see to given perturbative order)
- s_V : not observable (formal integration variable) but boundaries (e.g. $4m_{\pi}^2 \leq s_V \leq s$) are!
- \Rightarrow from the measured $\sigma_{\rm obs}$ and the theoretically known $\rho_{\rm ini}^{\rm incl}(s,s_V) \implies \sigma^{(\gamma)}(s_V)$
- \rightarrow best fit to data by choosing suitable parameterization for $\sigma^{(\gamma)}(s_V)$ (e.g. MINUIT package)
- no $O(\alpha)$ IFS (C-invariance)
- $O(\alpha^2)$ IFS: per mill level (no leading log's)

²hep-ph/0212386 (J. Gluza, A. Hoefer, S. Jadach, F. Jegerlehner)

- \bullet in real experiments: kinematical cuts \Rightarrow ISR \otimes FSR breaking at $O(\alpha)$
- model error is small only if ISR \otimes FSR is broken slightly by cuts

 \Rightarrow Try to be as photon-inclusive as possible

• angular cuts: $\theta_{\pi} > \theta_{\pi}^{\min}$

 \longrightarrow test model error due to ISR \otimes FSR breaking within sQED:

$$
\begin{array}{rcl} \sigma_{\rm obs}^{\rm cut}(s) & = & \sigma_{\rm cut}^{\langle \gamma \rangle}(s) \left[1 + \delta_{\rm ini}(s,\Lambda) \right] \\[1ex] & + & \int_{4m_\pi^2}^{s-2\sqrt{s}\Lambda} d s_V \; \sigma_{\rm cut}^{\langle \gamma \rangle}(s_V) \; \rho_{\rm ini}^{\rm cut}(s,s_V) - \delta_{\rm cut}^{\rm scan}(s) \\[1ex] \delta_{\rm cut}^{\rm scan}(s) & = & \sigma_{\rm cut}^{\langle 0 \rangle}(s) \, \frac{\alpha}{\pi} \; \{ \gamma(s) - \gamma_{\rm cut}(s) \} + O(\alpha^2) \\[1ex] \sigma_{\rm cut}^{\langle \gamma \rangle}(s) & = & \left[F_\pi^{(\gamma)}(s) \right]^2 \frac{\alpha_{\rm cut}}{\alpha_{\rm cut}}(s) \end{array}
$$

 $\eta_{\text{(cut)}}(s)$: integrated $O(\alpha)$ FSR

• extract $|F_{\pi}^{(\gamma)}(s)|^2 \longrightarrow \sigma^{(\gamma)}(s)$ from data, once including and once excluding $\delta_{\text{cut}}^{\text{scan}}(s)$ $[\sigma^{(\gamma)}(s) \text{ vs. } \hat{\sigma}^{(\gamma)}(s)]$

- data fitting with MINUIT

 \longrightarrow

 \implies model error estimate by comparison:

$$
\Delta^{\text{scan}}_{\text{cut}}(s) = \frac{\sigma_{\text{cut}}^{(\gamma)}(s) - \hat{\sigma}_{\text{cut}}^{(\gamma)}(s)}{\sigma_{\text{cut}}^{(\gamma)}(s)}
$$

model error is small for $\sigma^{(\gamma)}$ extraction. $-$ test of sQED by comparison with excl. scenario

JG: ready for tests/comparisons ISR/FSR : files in fortran, $+$ NAG, Vegas, ...

FF=gfortran $FFLAGS = -m32$ $# - m32$ #LIBS = /products/naglib/libnag.a %.o: %.f $S(FF)$ $S(FFLAGS) - C - 0$ $S@$ $S<$ SOURCES=vegas7.f random.f cseepipi.f kincseepipi.f formkuehn.f elast.f \ int1.f int1neq.f 0BJECTS2=vegas7.o random.o main.o kinematic.o formkuehn.o elast.o hard.o #LIBS= /products/naglib/libnag.a new: yegas7.o random.o main.o kinematic.o formkuehn.o elast.o hard.o \$(FF) \$(FFLAGS) -o csnew -0 \$(OBJECTS2)

Radiative Corrections to Hadron Production in e^+e Annihilations at DA Φ NE Energies, Axel Hoefer, PhD thesis, [link](https://www.researchgate.net/publication/279829666_Radiative_corrections_to_hadron_production_in_ee-_annihilations_at_DAPhiNE_energies)

Radiative Return Measurement:

e.g. Φ factory like $DA\Phi NE$ or B-factories like BARBAR

- e^+e^- collision energy \sqrt{s} is fixed
- \bullet measurement of spectral function $d\sigma/ds'$ ($s' = M_{\text{had}}^2$) (radiative return due to ISR)
- \longrightarrow obtain $\sigma^{(0)}$ or $\sigma^{(\gamma)}$ from data
- Question: why not take $d\sigma/ds_V$ to obtain $\sigma^{(\gamma)}(s_V)$ via

$$
\frac{d\sigma_{\rm incl}}{ds_V} = \sigma^{(\gamma)}(s_V) \rho_{\rm ini}^{\rm incl}(s,s_V) + O(\alpha^2)_{\rm IFS}
$$

• Problem: already to leading order $s_V = s'$ for ISR but $s_V = s$ for FSR $(s_V$ is not observable!)

- \Rightarrow error one would make by identifying s_V with s' . $O(1)$ FSR
- \longrightarrow FSR $O(1)$ contribution is background \longrightarrow has to be subtracted!
- \bullet model error analysis within modified sQED $({\rm sQED}\times|F_{\pi}|^2) \rightarrow {\rm factorization\ of\ FSR}$

Basic conclusions

- accurate treatment of FSR in low energy σ_{had} measurements is crucial
	- \longrightarrow photon self energy $\longrightarrow \alpha(s)$, a_u^{had}
- \bullet advocate $\overline{\text{FSR}}$ -inclusive measurement at scan experiments \longrightarrow only way to obtain $\sigma^{(\gamma)}$ with acceptable model error
- Excl. Scan and Rad. Ret. : neither $\sigma^{(\gamma)}$ nor $\sigma^{(0)}$ without ad hoc model assumptions
- Radiative return measurements suffer from $O(1)$ FSR background

 \longrightarrow unsurmountable problem for $\pi\pi$ measurements at Φ factories at $\sqrt{s'} \leq 0.5$ GeV

• new model independent approach for treating FSR is desirable, especially to controll $O(1)$ FSR background \longrightarrow cross-check scan and τ -decay data

$e^+e^-\rightarrow\pi^+\pi^-$, motivation for further improvements

The biggest difference between KLOE and BABAR measurements, amounts there to about 2%. It goes even up to 10% around the narrow ω resonance For higher $\pi^+\pi^-$ invariant masses (at 0.9 GeV) the difference raises to 5%.

"Standard model radiative corrections in the pion form factor measurements do not explain the a_{μ} anomaly", F. Campanario et al, [PRD100,076004\(2019\)](https://inspirehep.net/literature/1726528) $sQED$ + form factors: FSR at NLO and pentaboxes tested and implemented to Phokhara10.0

Available at: http://ific.uv.es/∼[rodrigo/phokhara](https://ific.uv.es/~rodrigo/phokhara)

JG: ready for tests/comparisons

NLO pentabox corrections, results for KLOE, BABAR and BESS

- ▶ Missing NLO radiative corrections cannot be the source of the discrepancies between the different extractions of the pion form factor performed by BaBar, BES and KLOE.
- ▶ They cannot be the origin of the discrepancy between the experimental measurement and the SM prediction of a_u (too small).

 $e^+e^-\rightarrow \mu^+\mu^-\gamma$ process

F. Campanario, H. Czyż, JG, M. Gunia, T. Riemann, G. Rodrigo, V. Yundin Complete QED NLO contributions to the reaction $e^+e^{\rightarrow}\mu^+\mu^-\gamma$ and their implementation in the event generator PHOKHARA, JHEP 02 (2014) 114 <https://arxiv.org/abs/1312.3610>

 $e^+e^-\rightarrow \mu^+\mu^-\gamma$ — ideal benchmark process for massive tensor reduction

- ▶ Two different masses
- ▶ Large difference of scales (up to 7 orders in magnitude)
- ▶ Quasi-collinear region (due to small electron mass)
- ▶ Small number of diagrams

$$
e^+e^- \to \mu^+\mu^-\gamma
$$

- ▶ Diagram generation with DIANA [Tentyukov, Fleischer]
- \blacktriangleright Algebraic processing in FORM [Vermaseren]
- ▶ Tensor reduction PJFry [Yundin]
- ▶ Scalar integrals OneLOop [van Hameren]
- ▶ Monte-Carlo PHOKHARA [Rodrigo, Czyż, Kühn]

Compact result for squared one loop amplitude $({\sim}3$ ms per point).

 $e^+e^- \to \mu^+\mu^-\gamma$

Monte-Carlo integration as a stability test Two realistic sets of kinematical cuts

$$
m_e = 0.5109989 \cdot 10^{-3} \text{ GeV}, m_\mu = 0.105658367 \text{ GeV},
$$

$$
\alpha(0) = 1/137.03599968.
$$

Phase-space cuts for KLOE and BaBar settings. $\,Q^2\,$ is the invariant mass squared of the muon pair. $e^+e^-\rightarrow \mu^+\mu^-\gamma$ KLOE Q^2

FSR gauge invariance between tree diagrams (upper picture), and gauge invariance among four and five point one-loop integrals (below). Here diagrams were limited to FSR cases, the same property is present for ISR amplitudes. Trace and Quadrupole (helicity method) precision - pentagons, Gram determinants.

JG, Radcor 2011 talk, Theoretical improvements for luminosity monitoring at low energies [link](https://jgluza.us.edu.pl/pdf/radcor2011gluza.pdf)

Complete NLO $e^+e^- \to \mu^+\mu^-\gamma$ KLOE Q^2

Phokhara - Relevance of NLO Penta-Box contributions

KKMC-ee, Phokhara, ...

Staszek Jadach [e-Print: hep-ph/0506180 \[hep-ph\]](https://inspirehep.net/files/686afe1508585760a61445a05b0a1274)

Fig. 1. Muon pair mass (square) spectrum in case of ISR only. $\sqrt{s} = 1.01942$ GeV.

▶ Agreement to within 0.3% with KKMC.

Phokhara has no exponentiation, difference for high Q^2

"Measurement of additional radiation in the initial-state-radiation processes $e^+e^-\to\mu^+\mu^-\gamma$ and $e^+e^-\to\pi^+\pi^-\gamma$ at BABAR"

NNLO effects visible.

Comparisons with Phokhara, however

- ▶ The event selections used in arXiv:2308.05233 require to have at least 2 hard photons in the final state
- ▶ The matrix elements in Phokhara for $e^+e^-\to\pi^+\pi^-\gamma\gamma$ and $e^+e^-\rightarrow \mu^+\mu^-\gamma\gamma$ are calculated at <code>LO</code> , so no surprise the accuracy is not high

CMD3, new $\pi^+\pi^-$ results, latice QCD, smaller tensions

CMD3: <https://arxiv.org/abs/2302.08834>

"The CMD-3 result reduces the tension between the experimental value of the a_{μ} and its Standard Model prediction."

- ▶ Precision goals for SM theory high-energy studies at present and future colliders need progress in precision low energy input, e.g. $\alpha(s)$.
- ▶ Development of MC generators for low-energy studies is needed (e.g. ISR with 3 photons).
- ▶ Along with, inclusion of h.o. corrections, modeling hadron interactions.

Thank you for your attention.

▶ Precise calculations of higher order corrections for the process of Bhabha scattering $(e^+e^- \rightarrow e^+e^-)$ are necessary for determine colliders luminosity with high accuracy.

$$
L_{tot} = \frac{N}{\sigma_{theory}}
$$

▶ High accuracy of luminosity in low energy region is necessary to research low energy hadron cross section from $e + e -$ annihilation process.

$$
\sigma_{had} = \frac{N_{had}}{L_{tot}}
$$

Carloni Calame, H. Czyz, JG, M. Gunia , G. Montagna, O. Nicrosini, F. Piccinini, T. Riemann, M. Worek,

NNLO leptonic and hadronic corrections to Bhabha scattering and luminosity monitoring at meson factories, JHEP 07 (2011) 126 <https://arxiv.org/abs/1106.3178>

 \triangleright NNLO virtual corrections linked with real corrections and realistic experimental cuts for low energy machines: Φ factory Dafne at Frascati, B factories PEP-II (SLAC) and Belle (KEK) and at the charm/ τ factory BEPC II, Beijing

▶ calculation of virtual corrections: package bha_nnlo_hf: Actis, Czakon, JG, Riemann calculation of real corrections: Monte Carlo generators EKHARA:, Czyż, Nowak BHAGHEN-1PH Czyż, Caffo Bhabha with additional pairs: HELAC–PHEGAS: Papadopoulos, Kanaki, Worek, Cafarella ▶ comparison complete calculations with approximate ones realized in the

MC generator BabaYaga: C.C.Calame, C. Lunardini, G. Montagna, O. Nicrosini, F. Piccinini

 \triangleright KKMC at low and high energies ... here low-energies

- ▶ BHLUMI v.4.04: Jadach, Placzek, Richter-Was, Was: CPC 1997
- ▶ NLLBHA: Arbuzov, Fadin, Kuraev, Lipatov, Merenkov, Trentadue: NPB 1997, CERN 96-01
- ▶ SAMBHA: Arbuzov, Haidt, Matteuzzi, Paganoni, Trentadue: hep-ph/0402211
- ▶ BabaYaga: Calame, Montagna, Nicrosini, Piccinini, http://www2.pv.infn.it/ hepc omplex/babayaga.html

BabaYaga is presently the main tool for luminosity at flavor factories. BHLUMI was a main tool at LEP.

Two regions where the Bhabha-scattering cross section is large and QED dominated

 $s = (p_1 + p_2)^2 = 4E^2 > 4m_e^2$, $t = (p_1 - p_3)^2 = -4(E^2 - m_e^2)\sin^2\frac{\theta}{2} < 0$

- ► $\sqrt{s} \sim 10^2$ GeV \Rightarrow small θ ▶ SABS \Rightarrow \mathcal{L} at LEP, ...
	- \sim a few degrees

► $\sqrt{s} \sim 1$ -10 GeV \Rightarrow large θ ▶ LABS \Rightarrow C at KLOE, ... $\theta \sim 55^0 - 125^0$

Ratio of electroweak to QED Bhabha scattering cross-section at large and

small angles as a function of CoM

1.Φ factories KLOE/DAΦNE (Frascati)

(a) $\sqrt{s} = 1.02 \text{ GeV}$ (b) $E_{min} = 0.4$ GeV (c) For $\theta \pm$ two selections have to be checked i. tighter selection $55^{\circ} < \theta \pm < 125^{\circ}$ ii. wider selection $20^{\circ} < \theta + < 160^{\circ}$ (d) $\zeta_{max}=4.5.6.7.8,...$ 14 deg., with reference value $\zeta_{max}=9^{\circ}$

2. B-factories BABAR/PEP-II (SLAC) & BELLE/KEKB (KEK)

(a) $\sqrt{s} = 10.56 \text{ GeV}$ (b) $|\vec{p}_{+}|/E_{beam} > 0.75$ and $|\vec{p}_{-}|/E_{beam} > 0.50$ or $|\vec{p}_{-}|/E_{beam} > 0.75$ and $|\vec{p}_{+}|/E_{beam} > 0.50$ (c) For $|cos(\theta \pm)|$ the following selections have to be checked i. $|cos(\theta \pm)| < 0.65$ and $|cos(\theta +)| < 0.60$ or $|cos(\theta -)| < 0.60$ ii. $|cos(\theta \pm)| < 0.70$ and $|cos(\theta+)| < 0.65$ or $|cos(\theta-)| < 0.65$ iii. |cos(θ±)| < 0.60 and |cos(θ+)| < 0.55 or |cos(θ−)| < 0.55 (d) $\zeta_{max}^{3d}\!=20$,22,24,...,40 deg., with reference value $\zeta_{max}^{3d}=30^o$

 \blacktriangleright the σ_{virt} consists of virtual two-loop corrections σ_{2L} and loop-by-loop corrections σ_{LLL}

$$
[\sum_{i=1}^N\frac{1}{i!}\sum_{j=1}^N\frac{1}{j!}\sum_{i=1}^N\frac{1}{j!}\sum_{i=1}^N\frac{1}{j!}\sum_{j=1}^N\frac{1}{j!}\sum_{j=1}^N\frac{1}{j!}\sum_{i=1}^N\frac{1}{j!}\sum_{j=1}^N\frac{1}{j!}\sum_{i=1}^N\frac{1}{j!}\sum_{j=1}^N\frac{1}{j!}\sum_{j=1}^N\frac{1}{j!}\sum_{i=1}^N\frac{1}{j!}\sum_{j=1}
$$

EXECUTE: contributions with real photon emission $\sigma_{\gamma} = \sigma_{\gamma, soft}(\omega) + \sigma_{\gamma, hard}(\omega)$

 \triangleright contributions with real pair or hadron emission $\sigma_{\text{real}} = \sigma_{e^+e^-(e^+e^-)} + \sigma_{e^+e^-(f^+f^-)} + \sigma_{e^+e^-(\text{hadrons})}$

Central reference cuts

The σ is the cross section in nb from BabaYaga(at)NLO, and $S_x = \frac{\sigma_x}{\sigma}$ in per-milles with $x = e^+e^-, lep, tot$, where tot stands for leptonic (lep) + hadronic corrections.

The vacuum polarisation function:

$$
\Pi(q^2) = \frac{\alpha q^2}{3\pi} \int_{m_{\text{H0}}^2}^{\text{inf}} \frac{dz}{z} \frac{R(z)}{q^2 - z + i\epsilon}
$$

For leptons VP analytical expresions were used. For pions VP numerical calculations of the integral were used.

For hadrons program VPHLMNT (T.Teubner et all.) was used.

$$
R_{res}(z) = \frac{9\pi}{\alpha^2} M_{res} \Gamma_{res}^{e^+e^-} \delta(z - M_{res}^2).
$$

$$
\frac{d\sigma_{\rm rest}}{d\Omega} = \frac{9\alpha^2}{\pi s} \frac{\Gamma_{\rm res}^{e^+e^-}}{M_{\rm res}} \left\{ \frac{F_1(M_{\rm res}^2)}{t - M_{\rm res}^2} + \frac{1}{s - M_{\rm res}^2} \left[F_2(M_{\rm res}^2) + F_3(M_{\rm res}^2) \ln \left| 1 - \frac{M_{\rm res}^2}{s} \right| \right] \right\}.
$$

Adaptive VEGAS is able to identify narrow resonances!

NNLO conclusions for meson factories Bhabha scattering

▶ Pions approximation is not enough.

▶ Exact calculations of NNLO massive corrections to Bhabha scattering were presented.

 \blacktriangleright The theoretical accuracy of the generator BABAYAGA@NLO was tested. For reference realistic event selections the maximum observed difference is at the level of 0.07% . When cuts are varied the sum of the missing pieces can reach 0.1%, but for very tight acollinearity cuts only.

- ▶ Stability of the results with changing of the event selections was examined - there aren't dramatical changes of errors between points with real experimental cuts and their neighbours.
- ▶ NNLO massive corrections are relevant for precision luminosity measurements with 10^{-3} accuracy. The electron pair contribution is the largely dominant part of the correction. The muon pair and hadronic corrections are the next-to-important effects and quantitatively on the same grounds. The tau pair contribution is negligible for the energies of meson factories.