Spin-entanglement in Hyperon Decays

Nora Salone nora.salone@ncbj.gov.pl

National Centre for Nuclear Research, Warsaw, Poland

November 12, 2024

Introduction	Hyperon Production	Nonleptonic 0000	Semileptonic 0000	Conclusions and Outlook
тт				

Hyperons

Credits: K. Schönning

• CP = combination of Charge-conjugation and Parity

- CP = combination of Charge-conjugation and Parity
- **O** CPV = necessary to explain baryon asymmetry (Sakharov conditions [Pisma Zh.Eksp.Teor.Fiz. 5 (1967)])

- CP = combination of Charge-conjugation and Parity
- Orev = necessary to explain baryon asymmetry (Sakharov conditions [Pisma Zh.Eksp.Teor.Fiz. 5 (1967)])
- Explained in SM (CKM) and established in kaon, B and D meson decays, but still insufficient to cover # 2.

- CP = combination of Charge-conjugation and Parity
- Orev = necessary to explain baryon asymmetry (Sakharov conditions [Pisma Zh.Eksp.Teor.Fiz. 5 (1967)])
- Explained in SM (CKM) and established in kaon, B and D meson decays, but still insufficient to cover # 2.
- **(**) Look for non-SM contributions, e.g. direct CPV in hyperon nonleptonic $\Delta S = 1$ decays.

- CP = combination of Charge-conjugation and Parity
- Orev = necessary to explain baryon asymmetry (Sakharov conditions [Pisma Zh.Eksp.Teor.Fiz. 5 (1967)])
- Explained in SM (CKM) and established in kaon, B and D meson decays, but still insufficient to cover # 2.
- Look for non-SM contributions, e.g. direct CPV in hyperon nonleptonic $\Delta S = 1$ decays.

Nonleptonic decays $B \rightarrow b\pi$

- □ Internal *W*-boson emission
- □ Final-state: 2-body, fewer spin combinations

Semileptonic decays $B \rightarrow b l \bar{\nu}_l$

- □ External *W*-boson emission
- □ Final-state: 3-body, more spin combinations

- Final-state: 2-body, fewer spin combinations
- □ Tests of symmetry laws (CPV)

- External W-boson emission
- Final-state: 3-body, more spin combinations
- □ Info on internal structure

Nonleptonic decays $B \rightarrow b\pi$

- □ Internal *W*-boson emission
- □ Final-state: 2-body, fewer spin combinations
- □ Tests of symmetry laws (CPV)

Semileptonic decays $B \rightarrow b l \bar{\nu}_l$

- External W-boson emission
- □ Final-state: 3-body, more spin combinations
- Info on internal structure

Production framework

Spin-entangled hyperon-antihyperon pairs produced at e^+e^- colliders (e.g. BESIII).

Introduction	Hyperon Production	Nonleptonic	Semileptonic	Conclusions and Outlook
000	●0000000000	0000	0000	

BESIII @ BEPCII

Beijing Electron-Positron Collider (BEPCII)

- e^+e^- collider: 1.85 GeV < E_{CMS} < 4.95 GeV
- $L_{\text{peak}} = 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$
- Data taking since 2009

Beijing Spectrometer (BESIII)

- Optimized for flavor physics
- Covering 93% of 4π solid angle
- 1.0 T super-conducting solenoid
- Momentum resolution: $\sigma(p)/p = 0.5\%$ at 1 GeV/c
- Time resolution: 68(65) ps in the barrel (end cap)

Introduction 000	Hyperon Production ○●○○○○○○○○○	Nonleptonic 0000	Semileptonic	Conclusions and Outlook

Lowest-lying hyperons

Y	Mass [GeV/ c^2]	$\Delta S = 1 \text{ decays } (Br)$	
A (uds)	1 116	$p\pi^{-}(64.1\%)$	
m (uus)	1.110	$n\pi^0(35.9\%)$	
Σ^+ (mus)	1 189	$p\pi^0(51.5\%)$	
2 (uus)	1.109	$n\pi^+(48.4\%)$	
Σ^{-} (dds)	1.197	$n\pi^{-}(99.8\%)$	
Ξ^0 (uss)	1.315	$\Lambda\pi^0(99.5\%)$	
Ξ^{-} (dss)	1.322	$\Lambda\pi^{-}(99.9\%)$	
		$\Lambda K^{-}(67.7\%)$	
Ω^{-} (sss)	1.672	$\Xi^0 \pi^-(24.3\%)$	
		$\Xi^{-}\pi^{0}(8.55\%)$	

Lowest-lying hyperons at BESIII

- □ World's largest charmonia sample $-10^{10}J/\psi$, $3 \times 10^9 \psi(2S)$
- Baryon-antibaryon pairs produced in **spin-entangled**, possibly **polarized** state.

Introduction	Hyperon Production	Nonleptonic 0000	Semileptonic 0000	Conclusions and Outlook

Produced $B\bar{B}$ in $e^+e^- \rightarrow \gamma^*$ reaction can be **polarized**.

[E. Perotti, PhD thesis, Uppsala Universitet]

Introduction 000	Hyperon Production	Nonleptonic 0000	Semileptonic 0000	Conclusions and Outlook

Produced $B\bar{B}$ in $e^+e^- \rightarrow \gamma^*$ reaction can be **polarized**.

[E. Perotti, PhD thesis, Uppsala Universitet]

□ Sachs form-factors $G_{E,M}^{\psi}$ parametrize the $\psi \to Y\bar{Y}$ vertex.

Introduction	Hyperon Production	Nonleptonic 0000	Semileptonic 0000	Conclusions and Outlook

Produced $B\bar{B}$ in $e^+e^- \rightarrow \gamma^*$ reaction can be **polarized**.

[E. Perotti, PhD thesis, Uppsala Universitet]

□ Sachs form-factors $G_{E,M}^{\psi}$ parametrize the $\psi \to Y\bar{Y}$ vertex.

Annihilation process: time-like $q^2 > M_{\gamma}^2$, i.e. **complex form-factors**.

$$\pmb{\alpha_{\psi}} = \frac{q^2 |G_M^{\psi}|^2 - 4M_Y^2 |G_E^{\psi}|^2}{q^2 |G_M^{\psi}|^2 + 4M_Y^2 |G_E^{\psi}|^2} \;, \quad \frac{G_E^{\psi}}{G_M^{\psi}} = e^{i \Delta \Phi} \left| \frac{G_E^{\psi}}{G_M^{\psi}} \right|^2$$

Introduction 000	Hyperon Production	Nonleptonic 0000	Semileptonic 0000	Conclusions and Outlook

Produced $B\bar{B}$ in $e^+e^- \rightarrow \gamma^*$ reaction can be **polarized**.

 $e^+e^- \rightarrow J/\psi \rightarrow \Lambda \bar{\Lambda}$ process [BESIII, PRL 129 (2022) 131801]

$$\mathbf{P}_{\Lambda} = \sqrt{1 - \boldsymbol{\alpha}_{\psi}^2} \frac{\sin(\boldsymbol{\Delta}\boldsymbol{\Phi})\cos\theta_{\Lambda}\sin\theta_{\Lambda}}{1 + \boldsymbol{\alpha}_{\psi}\cos^2\theta_{\Lambda}} \hat{\mathbf{y}}$$

□ Production defines CM frame;

 \Box for subsequent decays, we need to go to *B*, \overline{B} helicity frames \Longrightarrow helicity formalism

Introduction 000	Hyperon Production	Nonleptonic 0000	Semileptonic 0000	Conclusions and Outlook

Helicity formalism

[M. Jacob and G.C. Wick, Ann. Phys. 7, 404 (1959)]

 \Box Spin quantization axis = flight direction \Longrightarrow helicity is boost-invariant.

Before

After

Boost (L_z) to rest frame of mother (B, \bar{B}) :

Perform 3 rotations around the coordinate axes:

- **2** $-\theta_1$ around \hat{y} ;
- + ϕ_1 around \hat{z} (extra);

 $\mathbf{p}_{B(\bar{B})}$ is aligned with \hat{z} .

Introduction 000	Hyperon Production	Nonleptonic 0000	Semileptonic 0000	Conclusions and Outlook
A bit of theory				
Helicity states:				

$|p, \theta_1, \phi_1, \lambda_1, \lambda_2\rangle := \mathbf{R}(\phi_1, \theta_1, \mathbf{0}) |p, \lambda_1, \lambda_2\rangle$

Introduction	Hyperon Production	Nonleptonic 0000	Semileptonic 0000	Conclusions and Outlook
A bit of theory				

Helicity states:

$$|p, \theta_1, \phi_1, \lambda_1, \lambda_2\rangle := \mathbf{R}(\phi_1, \theta_1, \mathbf{0}) |p, \lambda_1, \lambda_2\rangle$$

Production spin-density matrix:

$$\begin{split} \rho_{B_1,\bar{B}_2}^{\lambda_1,\lambda_2;\lambda_1',\lambda_2'} &\propto \sum_{k=\pm 1} \left\langle \theta_1, 0, \lambda_1, \lambda_2 | S | 0, 0, \lambda, -\lambda \right\rangle \left\langle 0, 0, \lambda, -\lambda | S^{\dagger} | \theta_1, 0, \lambda_1', \lambda_2' \right\rangle \\ &\propto A_{\lambda_1,\lambda_2} A_{\lambda_1',\lambda_2'}^* \rho_1^{\lambda_1 - \lambda_2,\lambda_1' - \lambda_2'} (\theta_1) \end{split}$$

Introduction	Hyperon Production	Nonleptonic 0000	Semileptonic 0000	Conclusions and Outlook
A bit of theory				

Helicity states:

$$|p, \theta_1, \phi_1, \lambda_1, \lambda_2\rangle := R(\phi_1, \theta_1, 0) |p, \lambda_1, \lambda_2\rangle$$

Production spin-density matrix:

$$\begin{split} \rho^{\lambda_1,\lambda_2;\lambda'_1,\lambda'_2}_{B_1,\bar{B}_2} &\propto \sum_{k=\pm 1} \langle \theta_1, 0, \lambda_1, \lambda_2 | S | 0, 0, \lambda, -\lambda \rangle \langle 0, 0, \lambda, -\lambda | S^{\dagger} | \theta_1, 0, \lambda'_1, \lambda'_2 \rangle \\ &\propto & A_{\lambda_1,\lambda_2} A^*_{\lambda'_1,\lambda'_2} \rho^{\lambda_1 - \lambda_2, \lambda'_1 - \lambda'_2}_1(\theta_1) \end{split}$$

Transition amplitude matrix

$$J = 1/2: \qquad A_{\lambda_1,\lambda_2} = \begin{pmatrix} h_1 & h_2 \\ h_2 & h_1 \end{pmatrix}$$
$$h_1 = \sqrt{\frac{1 - \alpha_{\psi}}{2}}; \qquad h_2 = \sqrt{1 + \alpha_{\psi}} e^{-i\Delta \Phi}$$

Introduction	Hyperon Production	Nonleptonic 0000	Semileptonic 0000	Conclusions and Outlook
A bit of theory				

Helicity states:

$$|p, \theta_1, \phi_1, \lambda_1, \lambda_2\rangle := \mathbf{R}(\phi_1, \theta_1, \mathbf{0}) |p, \lambda_1, \lambda_2\rangle$$

Production spin-density matrix:

$$\rho_{B_1,\bar{B}_2}^{\lambda_1,\lambda_2;\lambda_1',\lambda_2'} \propto \sum_{\substack{k=\pm 1}} \langle \theta_1, 0, \lambda_1, \lambda_2 | S | 0, 0, \lambda, -\lambda \rangle \langle 0, 0, \lambda, -\lambda | S^{\dagger} | \theta_1, 0, \lambda_1', \lambda_2' \rangle$$

$$\propto A_{\lambda_1,\lambda_2} A_{\lambda_1',\lambda_2'}^* \rho_1^{\lambda_1-\lambda_2,\lambda_1'-\lambda_2'}(\theta_1)$$

Transition amplitude matrix

$$J = 1/2: \qquad A_{\lambda_1,\lambda_2} = \begin{pmatrix} h_1 & h_2 \\ h_2 & h_1 \end{pmatrix}$$
$$h_1 = \sqrt{\frac{1 - \alpha_{\psi}}{2}}; \qquad h_2 = \sqrt{1 + \alpha_{\psi}} e^{-i\Delta \Phi}$$

e⁺*e*⁻ *spin-density* matrix

$$\begin{split} \rho_1^{i,j}(\theta_1) &= \sum_{k=\pm 1} [\mathcal{D}_{k,i}^1(0,\theta_1,0)]^* \mathcal{D}_{k,j}^1(0,\theta_1,0) \\ \mathcal{D}_{m'm}^j(\alpha,\beta,\gamma) &= \langle jm' | R(\alpha,\beta,\gamma) | jm \rangle \end{split}$$

Introduction	Hyperon Production	Nonleptonic 0000	Semileptonic 0000	Conclusions and Outlook

This is the result!

[F. Tabakin and R. A. Eisenstein, Phys. Rev. C 31, 1857 (1985)], [E. Perotti et al., Phys. Rev. D 99, 056008 (2019)]

Spin-density matrix for $1/2 + \overline{1/2}$:

$$\rho_{B,\bar{B}} = \frac{1}{4} \sum_{\mu,\bar{\nu}=0}^{3} C_{\mu\bar{\nu}}(\theta) \, \sigma_{\mu}^{B} \otimes \sigma_{\bar{\nu}}^{\bar{B}}$$

Introduction	Hyperon Production	Nonleptonic 0000	Semileptonic 0000	Conclusions and Outlook

This is the result!

[F. Tabakin and R. A. Eisenstein, Phys. Rev. C 31, 1857 (1985)], [E. Perotti et al., Phys. Rev. D 99, 056008 (2019)]

Spin-density matrix for $1/2 + \overline{1/2}$:

$$\rho_{B,\bar{B}} = \frac{1}{4} \sum_{\mu,\bar{\nu}=0}^{3} \underbrace{C_{\mu\bar{\nu}}(\theta)} \sigma_{\mu}^{B} \otimes \sigma_{\bar{\nu}}^{\bar{B}}$$

$$\underbrace{C_{\mu\nu}(\theta)}_{(\mu\nu}(\theta)} \propto \begin{pmatrix}
1 + \alpha_{\psi} \cos^2\theta & 0 & \beta_{\psi} \sin\theta\cos\theta & 0 \\
0 & \sin^2\theta & 0 & \gamma_{\psi} \sin\theta\cos\theta \\
-\beta_{\psi} \sin\theta\cos\theta & 0 & \alpha_{\psi} \sin^2\theta & 0 \\
0 & -\gamma_{\psi} \sin\theta\cos\theta & 0 & -\alpha_{\psi} - \cos^2\theta
\end{pmatrix}$$

$$\beta_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \sin(\Delta \Phi), \quad \gamma_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \cos(\Delta \Phi)$$

Introduction	Hyperon Production	Nonleptonic 0000	Semileptonic 0000	Conclusions and Outlook

This is the result!

[F. Tabakin and R. A. Eisenstein, Phys. Rev. C 31, 1857 (1985)], [E. Perotti et al., Phys. Rev. D 99, 056008 (2019)]

Spin-density matrix for $1/2 + \overline{1/2}$:

Introduction 000	Hyperon Production	Nonleptonic 0000	Semileptonic 0000	Conclusions and Outlook

$$\rho_{B,\bar{B}} = \frac{1}{4} \sum_{\mu,\bar{\nu}=0}^{3} \overline{C_{\mu\bar{\nu}}(\theta)} \sigma_{\mu}^{B} \otimes \sigma_{\bar{\nu}}^{\bar{B}}, \qquad \text{pointlike } \tau : \Delta \Phi = 0, \ G_{E,M}^{\psi} \to 1$$

Introduction 000	Hyperon Production	Nonleptonic 0000	Semileptonic 0000	Conclusions and Outlook

$$\rho_{B,\bar{B}} = \frac{1}{4} \sum_{\mu,\bar{\nu}=0}^{3} \overline{C_{\mu\bar{\nu}}(\theta)} \sigma_{\mu}^{B} \otimes \sigma_{\bar{\nu}}^{\bar{B}}, \quad \text{pointlike } \tau : \Delta \Phi = 0, \ G_{E,M}^{\psi} \to 1$$

$$\overline{C_{\mu\nu}(\theta)} \propto \begin{pmatrix} 1 + \alpha_{\psi} \cos^{2}\theta & 0 & \beta_{\psi} \sin \theta \cos \theta & 0 \\ 0 & \sin^{2}\theta & 0 & \gamma_{\psi} \sin \theta \cos \theta \\ -\beta_{\psi} \sin \theta \cos \theta & 0 & \alpha_{\psi} \sin^{2}\theta & 0 \\ 0 & -\gamma_{\psi} \sin \theta \cos \theta & 0 & -\alpha_{\psi} - \cos^{2}\theta \end{pmatrix}$$

$$\beta_{\psi} = \sqrt{1 - \alpha_{\psi}^2 \sin(\Delta \Phi)}, \quad \gamma_{\psi} = \sqrt{1 - \alpha_{\psi}^2 \cos(\Delta \Phi)}$$

Introduction	Hyperon Production	Nonleptonic 0000	Semileptonic 0000	Conclusions and Outlook
				1

$$\rho_{B,\bar{B}} = \frac{1}{4} \sum_{\mu,\bar{\nu}=0}^{3} C_{\mu\bar{\nu}}(\theta) \sigma_{\mu}^{B} \otimes \sigma_{\bar{\nu}}^{\bar{B}}, \qquad \text{pointlike } \tau : \Delta \Phi = 0, \ G_{E,M}^{\psi} \to 1$$

$$\underbrace{C_{\mu\nu}(\theta)}_{\alpha} \propto \begin{pmatrix}
1 + \eta \cos^2 \theta & 0 & 0 & 0 \\
0 & \sin^2 \theta & 0 & \sqrt{1 - \eta^2} \sin \theta \cos \theta \\
0 & 0 & \eta \sin^2 \theta & 0 \\
0 & -\sqrt{1 - \eta^2} \sin \theta \cos \theta & 0 & -\eta - \cos^2 \theta
\end{pmatrix}$$

$$\alpha_{\psi} \rightarrow \eta = rac{q^2 - 4m_{ au}^2}{q^2 + 4m_{ au}^2}, \quad \beta_{\psi} \rightarrow 0, \quad \gamma_{\psi} \rightarrow \sqrt{1 - \eta^2}$$

$$\rho_{B,\bar{B}} = \frac{1}{4} \sum_{\mu,\bar{\nu}=0}^{3} C_{\mu\bar{\nu}}(\theta) \sigma_{\mu}^{B} \otimes \sigma_{\bar{\nu}}^{\bar{B}}, \quad \text{pointlike } \tau : \Delta \Phi = 0, \ G_{E,M}^{\psi} \to 1$$

$$\tau^{+} \text{ polarization}$$

$$C_{\mu\nu}(\theta) \propto \begin{pmatrix} 1 + \eta \cos^{2}\theta & 0 & 0 \\ 0 & \sin^{2}\theta & 0 & \sqrt{1 - \eta^{2}} \sin \theta \cos \theta \\ 0 & \eta \sin^{2}\theta & 0 \\ -\sqrt{1 - \eta^{2}} \sin \theta \cos \theta & 0 & -\eta - \cos^{2}\theta \end{pmatrix}$$

$$\tau^{-} \text{ polarization} \qquad \text{spin-correlation terms}$$

$$\alpha_{\psi} \to \eta = \frac{q^{2} - 4m_{\tau}^{2}}{q^{2} + 4m_{\tau}^{2}}, \quad \beta_{\psi} \to 0, \quad \gamma_{\psi} \to \sqrt{1 - \eta^{2}}$$

Introduction 000	Hyperon Production	Nonleptonic 0000	Semileptonic 0000	Conclusions and Outlook

[F. Tabakin and R. A. Eisenstein, Phys. Rev. C 31, 1857 (1985)], [E. Perotti et al., Phys. Rev. D 99, 056008 (2019)]

 $B\bar{B}$ spin-density matrix for $1/2 + \overline{1/2}$

$$\rho_{B,\bar{B}} = \frac{1}{4} \sum_{\mu,\bar{\nu}=0}^{3} C_{\mu\bar{\nu}}(\theta) \, \sigma_{\mu}^{B} \otimes \sigma_{\bar{\nu}}^{\bar{B}}$$

Goal

Derive the **production** spin-density matrix $\rho_{B,\bar{B}}$ with e^- beam polarization.

Introduction 000	Hyperon Production	Nonleptonic 0000	Semileptonic 0000	Conclusions and Outlook

[F. Tabakin and R. A. Eisenstein, Phys. Rev. C 31, 1857 (1985)], [E. Perotti et al., Phys. Rev. D 99, 056008 (2019)]

 $B\bar{B}$ spin-density matrix for $1/2 + \overline{1/2}$

$$\rho_{B,\bar{B}} = \frac{1}{4} \sum_{\mu,\bar{\nu}=0}^{3} C_{\mu\bar{\nu}}(\theta) \, \sigma_{\mu}^{B} \otimes \sigma_{\bar{\nu}}^{\bar{B}}$$

Goal

Derive the **production** spin-density matrix $\rho_{B,\bar{B}}$ with e^- beam polarization.

Longitudinally polarized electron beam:

- □ Envisioned improvement @ next-generation e^+e^- colliders (e.g. Super Tau-Charm Factory in China).
- At J/ψ energies, $P_e = 0.8 0.9$ is achievable.

At current e^+e^- colliders, e^- beam is **not polarized**:

$$\underbrace{C_{\mu\nu}(\theta)}_{\mu\nu} \propto \begin{pmatrix}
1 + \alpha_{\psi} \cos^{2}\theta & 0 & \beta_{\psi} \sin\theta\cos\theta & 0 \\
0 & \sin^{2}\theta & 0 & \gamma_{\psi} \sin\theta\cos\theta \\
-\beta_{\psi} \sin\theta\cos\theta & 0 & \alpha_{\psi} \sin^{2}\theta & 0 \\
0 & -\gamma_{\psi} \sin\theta\cos\theta & 0 & -\alpha_{\psi} - \cos^{2}\theta
\end{pmatrix}$$

$$\beta_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \sin(\Delta \Phi), \quad \gamma_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \cos(\Delta \Phi)$$

Introduction	Hyperon Production	Nonleptonic 0000	Semileptonic 0000	Conclusions and Outlook

If *e*⁻ beam is **polarized** [NS, A. Kupść, V. Batozskaya et al., PRD 105, 116022 (2022)]:

$$C_{\mu\nu}(\theta) \propto \begin{pmatrix} 1 + \alpha_{\psi} \cos^2\theta & \gamma_{\psi} P_e \sin\theta & \beta_{\psi} \sin\theta \cos\theta & (1 + \alpha_{\psi}) P_e \cos\theta \\ \gamma_{\psi} P_e \sin\theta & \sin^2\theta & 0 & \gamma_{\psi} \sin\theta \cos\theta \\ -\beta_{\psi} \sin\theta \cos\theta & 0 & \alpha_{\psi} \sin^2\theta & -\beta_{\psi} P_e \sin\theta \\ -(1 + \alpha_{\psi}) P_e \cos\theta & -\gamma_{\psi} \sin\theta \cos\theta & -\beta_{\psi} P_e \sin\theta & -\alpha_{\psi} - \cos^2\theta \end{pmatrix}$$

$$\beta_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \sin(\Delta \Phi), \quad \gamma_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \cos(\Delta \Phi)$$

Introduction	Hyperon Production ○○○○○○○○○	Nonleptonic 0000	Semileptonic 0000	Conclusions and Outlook

If *e*⁻ beam is **polarized** [NS, A. Kupść, V. Batozskaya et al., PRD 105, 116022 (2022)]:

 \bar{B} polarization $C_{\mu\nu}(\theta) \propto \begin{pmatrix} 1 + \alpha_{\psi} \cos^{2}\theta & \gamma_{\psi} P_{e} \sin\theta & \beta_{\psi} \sin\theta \cos\theta & (1 + \alpha_{\psi}) P_{e} \cos\theta \\ \gamma_{\psi} P_{e} \sin\theta & \gamma_{\psi} P_{e} \sin\theta & \beta_{\psi} \sin\theta \cos\theta & (1 + \alpha_{\psi}) P_{e} \cos\theta \\ -\beta_{\psi} \sin\theta \cos\theta & -\beta_{\psi} P_{e} \sin\theta & -\beta_{\psi} P_{e} \sin\theta \\ -\gamma_{\psi} \sin\theta \cos\theta & -\beta_{\psi} P_{e} \sin\theta & -\alpha_{\psi} - \cos^{2}\theta \end{pmatrix}$ *B* polarization spin-correlation terms $\beta_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \sin(\Delta \Phi), \quad \gamma_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \cos(\Delta \Phi)$

Introduction	Hyperon Production ○○○○○○○○○●	Nonleptonic 0000	Semileptonic 0000	Conclusions and Outlook

If *e*⁻ beam is **polarized** [NS, A. Kupść, V. Batozskaya et al., PRD 105, 116022 (2022)]:

 \bar{B} polarization $C_{\mu\nu}(\theta) \propto \begin{pmatrix} 1 + \alpha_{\psi} \cos^{2}\theta & \gamma_{\psi} P_{e} \sin \theta & \beta_{\psi} \sin \theta \cos \theta & (1 + \alpha_{\psi}) P_{e} \cos \theta \\ \gamma_{\psi} P_{e} \sin \theta & \sin^{2}\theta & 0 & \gamma_{\psi} \sin \theta \cos \theta \\ -\beta_{\psi} \sin \theta \cos \theta & 0 & \alpha_{\psi} \sin^{2}\theta & -\beta_{\psi} P_{e} \sin \theta \\ -(1 + \alpha_{\psi}) P_{e} \cos \theta & -\gamma_{\psi} \sin \theta \cos \theta & -\beta_{\psi} P_{e} \sin \theta & -\alpha_{\psi} - \cos^{2}\theta \end{pmatrix}$ *B* polarization spin-correlation terms $\beta_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \sin(\Delta \Phi), \quad \gamma_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \cos(\Delta \Phi)$

Beam polarization $P_e \neq 0$ introduces additional components in the $\mathbf{P}_{B,\bar{B}}$ polarization vectors and in the spin-correlation terms.

Nora Salone	(NCBJ)
-------------	--------

Introduction 000	Hyperon Production	Nonleptonic ●000	Semileptonic 0000	Conclusions and Outlook

Nonleptonic decays

The e^+e^- -produced $Y\bar{Y}$ pairs decay further, e.g.

 $J = S_b + S_{\pi} + L_{b\pi}$ $B(1/2) \rightarrow b(1/2) \pi(0)$ $L_{b\pi} = 0 \implies S \text{-wave, parity-violating}$ $L_{b\pi} = 1 \implies P \text{-wave, parity-conserving}$ $\mathcal{M} \propto \bar{u}_b (S + P\gamma_5) u_B$

Introduction 000	Hyperon Production	Nonleptonic O●OO	Semileptonic 0000	Conclusions and Outlook

Nonleptonic decay parameters

From partial waves to observables:

 $\Lambda \rightarrow p\pi^{-}$ decay

Introduction 000	Hyperon Production	Nonleptonic O●OO	Semileptonic 0000	Conclusions and Outlook

Nonleptonic decay parameters

From partial waves to observables:

Angular distribution $\frac{d\Gamma}{d\Omega} \propto 1 + \boldsymbol{\alpha} \mathbf{P}_{\Lambda} \cdot \hat{\mathbf{n}}$

$$\boldsymbol{\alpha} = \frac{2\Re(S^*P)}{|S|^2 + |P|^2}$$

□ Spin $\mathbf{s}_{\Lambda} \rightarrow \mathbf{s}_p$ rotation

$$\beta = \frac{2\Im(S^*P)}{|S|^2 + |P|^2} = \sqrt{1 - \alpha^2} \sin \phi$$

measurable with \mathbf{P}_{Λ} , \mathbf{P}_{p} .

 $\Lambda \rightarrow p\pi^{-}$ decay

Introduction	Hyperon Production	Nonleptonic O●OO	Semileptonic 0000	Conclusions and Outlook

Nonleptonic decay parameters

From partial waves to observables:

Angular distribution $\frac{d\Gamma}{d\Omega} \propto 1 + \boldsymbol{\alpha} \mathbf{P}_{\Lambda} \cdot \hat{\mathbf{n}}$

$$\boldsymbol{\alpha} = \frac{2\Re(S^*P)}{|S|^2 + |P|^2}$$

 $\Box \quad \text{Spin } \mathbf{s}_{\Lambda} \to \mathbf{s}_p \text{ rotation}$

$$\beta = \frac{2\mathfrak{I}(S^*P)}{|S|^2 + |P|^2} = \sqrt{1 - \alpha^2} \sin \phi$$

measurable with \mathbf{P}_{Λ} , \mathbf{P}_{p} .

CP tests [P. Adlarson, A. Kupść, PRD 100 (2019) 114005]

$$\mathbf{A}_{\mathbf{CP}} = \frac{\alpha + \bar{\alpha}}{\alpha - \bar{\alpha}}, \quad B_{\mathbf{CP}} := \frac{\beta + \bar{\beta}}{\alpha - \bar{\alpha}}, \quad \mathbf{\Phi}_{\mathbf{CP}} = \frac{\phi + \bar{\phi}}{2}$$

 $\Lambda \rightarrow p\pi^-$ decay

Motivation: new data landscape

nature physics LETTERS https://doi.org/10.1038/s41567-019-0494-8

Polarization and entanglement in baryonantibaryon pair production in electron-positron annihilation

The BESIII Collaboration*

[Nature Phys. 15 (2019) 631]

Article | Open Access | Published: 01 June 2022

Probing CP symmetry and weak phases with entangled double-strange baryons

The BESIII Collaboration

Nature 606, 64–69 (2022) Cite this article

11k Accesses | 7 Citations | 96 Altmetric | Metrics

[Nature 606, 64-69 (2022)]

PHYSICAL REVIEW LETTERS

lighlights Recent Accepted Collections Authors Referees Search Press About

Open Access

Access by Pro

Precise Measurements of Decay Parameters and CP Asymmetry with Entangled $\Lambda \text{-}\bar{\Lambda}$ Pairs

M. Ablikim et al. (BESIII Collaboration) Phys. Rev. Lett. **129**, 131801 – Published 22 September 2022

[Phys.Rev.Lett. 129 (2022) 131801]

Nora Salone (NCBJ)

November 12, 2024

 $\Xi^- \rightarrow \Lambda (\rightarrow p\pi^-)\pi^-$ decay [Nature 606 (2022) 64–69]

 Introduction
 Hyperon Production
 Nonleptonic
 Scmileptonic
 Conclusions and Outlook

 000
 000
 000
 000
 000
 000

 Two-step decays
 [NS, A. Kupść, V. Batozskaya et al., PRD 105, 116022 (2022)]

For $\Xi^- \to \Lambda(\to p\pi^-)\pi^-$, simultaneous A_{CP}^{Ξ} , Φ_{CP}^{Ξ} measurements are possible.

Results

 \Box CP tests statistical uncertainties are reduced with a polarized e^- beam.

□ Impact differs btw methods of event reconstruction: highest on Single Tag.

Nora Salone (NCBJ)

Spin-entanglement in Y decays

Semileptonic decays

The e^+e^- -produced $Y\bar{Y}$ pairs can also decay semileptonically:

□ related to baryon internal structure

Semileptonic decay matrix

The produced $B\bar{B}$ pair can decay via nonleptonically or semileptonically, e.g. $\Lambda\bar{\Lambda} \rightarrow pe^-\bar{\nu}_e \bar{p}\pi^+$.

How to extract the angular distributions of the $B\bar{B}$ chains, keeping track of **spin-correlation**?

Change of basis [E. Perotti et al., Phys. Rev. D 99, 056008 (2019)]:

insert
$$\sigma_{\mu}^{m} \to \sum_{\nu=0}^{3} a_{\mu\nu} \sigma_{\nu}^{d}$$
 into $\rho_{B,\bar{B}} = \sum_{\mu,\bar{\nu}=0}^{3} C_{\mu\bar{\nu}}(\theta) \sigma_{\mu}^{B} \otimes \sigma_{\bar{\nu}}^{\bar{B}}$

Semileptonic decay matrix

The produced $B\bar{B}$ pair can decay via nonleptonically or semileptonically, e.g. $\Lambda\bar{\Lambda} \rightarrow pe^-\bar{\nu}_e \bar{p}\pi^+$.

How to extract the angular distributions of the $B\bar{B}$ chains, keeping track of **spin-correlation**?

Change of basis [E. Perotti et al., Phys. Rev. D 99, 056008 (2019)]:

insert
$$\sigma_{\mu}^{m} \rightarrow \sum_{\nu=0}^{3} a_{\mu\nu} \sigma_{\nu}^{d}$$
 into $\rho_{B,\bar{B}} = \sum_{\mu,\bar{\nu}=0}^{3} C_{\mu\bar{\nu}}(\theta) \sigma_{\mu}^{B} \otimes \sigma_{\bar{\nu}}^{\bar{B}}$
Tr $\rho_{p\bar{p}} \propto \sum_{\mu,\bar{\nu}=0}^{3} C_{\mu\bar{\nu}}^{\Lambda\bar{\Lambda}}(\theta) \mathcal{B}_{\mu 0}^{\Lambda p} a_{\bar{\nu}0}^{\bar{\Lambda}\bar{p}}$
Feature
This is a modular approach!

Semileptonic decay matrix

The produced $B\bar{B}$ pair can decay via nonleptonically or semileptonically, e.g. $\Lambda\bar{\Lambda} \rightarrow pe^-\bar{\nu}_e \bar{p}\pi^+$.

How to extract the angular distributions of the $B\bar{B}$ chains, keeping track of **spin-correlation**?

Change of basis [E. Perotti et al., Phys. Rev. D 99, 056008 (2019)]:

$$\inf \operatorname{cr} \sigma_{\mu}^{m} \to \sum_{\nu=0}^{3} a_{\mu\nu} \sigma_{\nu}^{d} \quad \operatorname{into} \quad \rho_{B,\bar{B}} = \sum_{\mu,\bar{\nu}=0}^{3} C_{\mu\bar{\nu}}(\theta) \sigma_{\mu}^{B} \otimes \sigma_{\bar{\nu}}^{\bar{B}}$$
$$\operatorname{Tr} \rho_{p\bar{p}} \propto \sum_{\mu,\bar{\nu}=0}^{3} C_{\mu\bar{\nu}}(\theta) \sum_{\mu'=0}^{3} a_{\mu\mu'}^{\Xi \Lambda} \mathcal{B}_{\mu'0}^{\Lambda p} \sum_{\bar{\nu}'=0}^{3} a_{\bar{\nu}\bar{\nu}'}^{\Xi \bar{\Lambda}} a_{\bar{\nu}\nu}^{\bar{\Lambda}\bar{p}}$$
$$\operatorname{Feature}$$
$$\operatorname{This is a modular approach!} a_{\mu\nu} \longrightarrow \mathcal{B}_{\mu\nu}$$

Introduction 000	Hyperon Production	Nonleptonic 0000	Semileptonic OOOO	Conclusions and Outlook

Aligned decay matrix [V. Batozskaya, A. Kupść, NS et al., Phys. Rev. D 108, 016011 (2023)]

Full semileptonic transition amplitude can be factorized into

 $\mathcal{A}(B \to b l \bar{\nu}_l) = \frac{1}{2\pi} \sum_{\lambda'=-1/2}^{1/2} \underbrace{\mathcal{D}_{\kappa,\lambda'}^{1/2*}(\Omega_b)}_{\mathcal{K},\lambda'} \underbrace{\mathcal{H}_{\lambda',\lambda_b}(\Omega_l, q^2, \lambda_l, \lambda_\nu)}_{\text{decay info}}$

Introduction	Hyperon Production	Nonleptonic 0000	Semileptonic ○○●○	Conclusions and Outlook

Aligned decay matrix [V. Batozskaya, A. Kupść, NS et al., Phys. Rev. D 108, 016011 (2023)]

Full semileptonic transition amplitude can be factorized into

$$\mathcal{A}(B \to b l \bar{\nu}_l) = \frac{1}{2\pi} \sum_{\lambda'=-1/2}^{1/2} \underbrace{\mathcal{D}_{\kappa,\lambda'}^{1/2*}(\Omega_b)}_{\mathcal{K},\lambda'} \underbrace{\mathcal{H}_{\lambda',\lambda_b}(\Omega_l, q^2, \lambda_l, \lambda_\nu)}_{\text{decay info}}$$

SL decay matrix

$$\mathcal{B}_{\mu\nu} = \sum_{\kappa=0}^{3} \mathcal{R}^{(4)}_{\mu\kappa}(\Omega_b) \underbrace{b_{\kappa\nu}(q^2, \Omega_l)}_{k\nu} \text{ with } \mathcal{R}^{(4)}(\Omega_b) = \text{diag}\left(1, \mathcal{R}(\Omega_b)\right)$$

Introduction	Hyperon Production	Nonleptonic 0000	Semileptonic OOOO	Conclusions and Outlook

Aligned decay matrix [V. Batozskaya, A. Kupść, NS et al., Phys. Rev. D 108, 016011 (2023)]

Full semileptonic transition amplitude can be factorized into

$$\mathcal{A}(B \to b l \bar{\nu}_l) = \frac{1}{2\pi} \sum_{\lambda'=-1/2}^{1/2} \underbrace{\mathcal{D}_{\kappa,\lambda'}^{1/2*}(\Omega_b)}_{\mathcal{K},\lambda'} \underbrace{\mathcal{H}_{\lambda',\lambda_b}(\Omega_l, q^2, \lambda_l, \lambda_\nu)}_{\text{decay info}}$$

SL decay matrix

$$\mathcal{B}_{\mu\nu} = \sum_{\kappa=0}^{3} \mathcal{R}^{(4)}_{\mu\kappa}(\Omega_{b}) b_{\kappa\nu}(q^{2},\Omega_{l}) \quad \text{with} \quad \mathcal{R}^{(4)}(\Omega_{b}) = \text{diag}\left(1,\mathcal{R}(\Omega_{b})\right)$$

Features

 \square $b_{\kappa\nu}(q^2, \Omega_l)$ SL decay matrix when m - d frames are aligned, i.e. $\Omega_b = \{0, 0, 0\}$.

□ The decomposition applies to any transition between spin-1/2 baryons.

Nora Salone (NCBJ)

Spin-entanglement in Y decays

Introduction 000	Hyperon Production	Nonleptonic 0000	Semileptonic 000●	Conclusions and Outlook

SL FF uncertainties [V. Batozskaya, A. Kupść, NS et al., PRD 108, 016011 (2023)]

Conclusions and Outlook

Conclusions

- $Y\bar{Y}$ pairs produced at e^+e^- colliders feature relevant spin-correlation and polarization properties. Modular framework to keep track of the spin-correlation properties within the produced pairs in their subsequent decays.
- OP tests can be built on nonleptonic decay observables; significant improvement in their statistical uncertainties expected for a longitudinally polarized e⁻ beam.
- Spin-correlation terms are also employed to improve statistical uncertainties of semileptonic form factors (unpolarized beam). Factorize and generalize the angular dependence on the mother-daughter helicity rotation.

Outlook

- **()** This modular framework describes general spin-1/2 baryons: **directly** applicable to e.g. charm baryons.
- Extraction of the hyperon SL FFs from the data collected by the BESIII collaboration (currently).

Semileptonic

Thank You for your attention.

Any questions?

(this is the part where you run)

Dziękuję za uwagę! Jakieś pytania?

Approximate maximum likelihood method

Fisher information matrix

$$I(\omega_k, \omega_l) := N \int \frac{1}{\mathcal{P}} \frac{\partial \mathcal{P}}{\partial \omega_k} \frac{\partial \mathcal{P}}{\partial \omega_l} \mathrm{d}\boldsymbol{\xi}$$

To compute e.g. $I_0(A_{CP})$ assume

$$\frac{1}{\mathcal{P}} = \frac{\mathcal{V}}{C_{00}} \frac{1}{1+\mathcal{G}} = \frac{\mathcal{V}}{C_{00}} \sum_{i=0}^{\infty} (-\mathcal{G})^{i} \text{ with } \int \mathcal{G} d\boldsymbol{\xi} = 0, \ \mathcal{G} \ge -1$$
$$I_{0}(A_{\rm CP}) = \frac{2N}{3} \alpha^{2} \langle \mathbf{P}_{B}^{2} \rangle \implies \sigma(A_{\rm CP}) \approx \sqrt{\frac{3}{2}} \frac{1}{\alpha \sqrt{N \langle \mathbf{P}_{B}^{2} \rangle}}.$$

CPV in hyperon decays

Introducing CP-odd and final-state interaction phases [PRD 105 (2022) 116022], [PRD 34 (1986) 833]:

 $S = |S| \exp(i\xi_S + i\delta_S)$ $P = |P| \exp(i\xi_P + i\delta_P)$

$$A_{CP} = -\tan(\delta_P - \delta_S) \tan(\xi_P - \xi_S)$$
$$\Phi_{CP} = \frac{\alpha}{\sqrt{1 - \alpha^2}} \cos\phi \tan(\xi_P - \xi_S)$$

New results in Ξ decays:

CP-odd phase difference [Nature 606, 64–69 (2022)]

 $\xi_P - \xi_S = (1.2 \pm 3.4 \pm 0.8) \times 10^{-2}$ rad SM : $\xi_P - \xi_S = (-2.1 \pm 1.7) \times 10^{-4}$ rad

 \Box Ξ^- polarization and decay parameters

 $\alpha_{\Xi} = -0.376 \pm 0.007 \pm 0.003, \ \phi_{\Xi} = 0.011 \pm 0.019 \pm 0.009 \text{ rad}$

 $A_{CP}^{\Xi} = (6 \pm 13 \pm 6) \times 10^{-3}$ SM : $A_{CP}^{\Xi} = (-0.6 \pm 1.6) \times 10^{-5}$

Nora Salone (NCBJ)

Nonleptonic decay matrix

P.d.f. for two-step decay $\Xi \to \Lambda(\to N\pi)\pi$

$$\mathcal{P}^{\Xi\overline{\Xi}}(\boldsymbol{\xi}_{\Xi\overline{\Xi}};\boldsymbol{\omega}_{\Xi}) = \frac{1}{(4\pi)^5} \sum_{\mu,\nu=0}^3 C_{\mu\nu}(\theta) \left(\sum_{\mu'=0}^3 a^{\Xi}_{\mu\mu'} a^{\Lambda}_{\mu'0} \right) \left(\sum_{\nu'=0}^3 a^{\overline{\Xi}}_{\nu\nu'} a^{\overline{\Lambda}}_{\nu'0} \right)$$

Nonleptonic decay matrix: [E. Perotti et al, Phys. Rev. D 99 (2019) 056008]

d polarization P_i^d for $P_i^m = 0$

$$a_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & \alpha \\ \alpha \sin \theta \cos \varphi \\ \alpha \sin \theta \sin \varphi \\ \alpha \cos \theta & \gamma \cos \theta \cos \varphi - \beta \sin \varphi & -\beta \cos \theta \cos \varphi - \gamma \sin \varphi & \sin \theta \cos \varphi \\ \beta \cos \varphi + \gamma \cos \theta \sin \varphi & \gamma \cos \varphi - \beta \cos \theta \sin \varphi & \sin \theta \sin \varphi \\ -\gamma \sin \theta & \beta \sin \theta & \cos \theta \end{pmatrix}$$

m polarization P_i^m for $P_i^d = 0$ spin-correlation $m - d$
$$\alpha = \frac{2\Re(S^*P)}{|S|^2 + |P|^2}, \quad \beta = \sqrt{1 - \alpha^2} \sin \phi, \quad \alpha^2 + \beta^2 + \gamma^2 = 1$$

Nora Salone (NCBJ)

Examples of aligned matrices [V. Batozskaya, A. Kupść, NS et al., Phys. Rev. D 108, 016011 (2023)]

$$\begin{split} B &\to b\pi : \\ a_{\mu\nu} \propto \begin{pmatrix} 1 & 0 & 0 & \alpha \\ 0 & \gamma & -\beta & 0 \\ 0 & \beta & \gamma & 0 \\ \alpha & 0 & 0 & 1 \end{pmatrix} \end{split}$$

$$\begin{split} B &\to b W_{\text{off-shell}}^{-}(\to l^{-}\bar{\nu}_{l}): \qquad b_{\mu\nu} = b_{\mu\nu}^{\text{nf}} + \epsilon b_{\mu\nu}^{\text{f}} \\ b_{00}^{\text{nf}} &= \begin{pmatrix} b_{00}^{\text{nf}} & -\Re(I_{01}^{\text{nf}}) & \Im(I_{10}^{\text{nf}}) & b_{03}^{\text{nf}} \\ -\Re(I_{10}^{\text{nf}}) & \Re(\mathcal{E}_{00}^{\text{nf}} + \mathcal{E}_{11}^{\text{nf}}) & -\Im(\mathcal{E}_{00}^{\text{nf}} + \mathcal{E}_{11}^{\text{nf}}) & \Re(I_{13}^{\text{nf}}) \\ \Im(I_{10}^{\text{nf}}) & \Im(\mathcal{E}_{00}^{\text{nf}} - \mathcal{E}_{11}^{\text{nf}}) & \Re(\mathcal{E}_{00}^{\text{nf}} - \mathcal{E}_{11}^{\text{nf}}) & -\Im(I_{13}^{\text{nf}}) \\ b_{30}^{\text{nf}} & -\Re(I_{31}^{\text{nf}}) & \Im(I_{31}^{\text{nf}}) & b_{33}^{\text{nf}} \end{pmatrix} \\ b_{4\mu\nu}^{\text{f}} &= \begin{pmatrix} b_{00}^{\text{f}} & -\Re(I_{01}^{\text{f}}) & \Im(I_{31}^{\text{f}}) & \delta_{33}^{\text{ff}} \\ -\Re(I_{10}^{\text{f}}) & \Re(\mathcal{E}_{00}^{\text{f}} - \mathcal{E}_{11}^{\text{f}}) & -\Im(\mathcal{E}_{00}^{\text{f}} - \mathcal{E}_{11}^{\text{f}}) & \Re(I_{13}^{\text{f}}) \\ \Im(I_{10}^{\text{f}}) & \Im(\mathcal{E}_{00}^{\text{f}} + \mathcal{E}_{11}^{\text{f}}) & \Re(\mathcal{E}_{00}^{\text{f}} + \mathcal{E}_{11}^{\text{f}}) & -\Im(I_{13}^{\text{f}}) \\ b_{30}^{\text{f}} & -\Re(I_{31}^{\text{f}}) & \Im(I_{31}^{\text{f}}) & \delta_{33}^{\text{f}} \end{pmatrix} \end{pmatrix}$$