$B^+ \rightarrow K^+ \tau^{\pm} \ell^{\mp}$ analysis with semileptonic tagging in Belle & Belle II

This study is based on the Belle MC/Data.

Junaid Ur Rehman 12/11/2024

The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

Outline

- Motivation
- Analysis approach
- Basic selections and BDT analysis
- Control modes analysis
 - $\label{eq:alpha} \ B^{\scriptscriptstyle +} \ \rightarrow \ J/\psi \ (\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -} \) \ K^{\scriptscriptstyle +}$
 - $\ \ \, \neg \ \ \, B^{\scriptscriptstyle +} \ \ \, \rightarrow \ \, \overline{D}{}^{\scriptscriptstyle 0} \ \, (K^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -} \) \ \pi^{\scriptscriptstyle +}$
- Summary and outlook

Motivation

- In the standard model (SM), $B^{\scriptscriptstyle +} \to K^{\scriptscriptstyle +} \, \tau^{\scriptscriptstyle \pm} \, \ell^{\scriptscriptstyle \mp}$ decays are not allowed.
- Third generational coupling and τ presence are sensitive to new physics (NP). Some NP models predict BR~10⁻⁷.
- Current upper limits are $(0.59-2.45)\times 10^{-5}$, measured by using hadronic tagging and mainly leptonic τ decays [1].
- We are trying to add additional statistics by including the semileptonic τ decays and using the semileptonic B_{tag}.

$$\begin{split} \mathcal{B}(B^+ \to K^+ \tau^+ \mu^-) &< 0.59 \times 10^{-5} \\ \mathcal{B}(B^+ \to K^+ \tau^+ e^-) &< 1.51 \times 10^{-5} \\ \mathcal{B}(B^+ \to K^+ \tau^- \mu^+) &< 2.45 \times 10^{-5} \\ \mathcal{B}(B^+ \to K^+ \tau^- e^+) &< 1.53 \times 10^{-5} \end{split}$$

1. S. Watanuki et al. (Belle Collaboration), Search for the Lepton Flavor Violating Decays $B + \rightarrow K + \tau \pm \ell \mp (\ell = e, \mu)$ at Belle PhysRevLett. 130.261802

Analysis approach

- We are using the basic kinematic constraints of the experiment to reconstruct our decay.
- Our complete decay has the following form

 $\begin{array}{rcl} e^+e^- &\rightarrow Y(4S) \rightarrow & B^+ & B^- \\ & B^+ &\rightarrow & K^+ & \tau^- & \mu^+ & (\textbf{B}_{sig}) \\ & & & \tau^- \rightarrow & \pi^- \nu_\tau \\ & & B^- &\rightarrow & X\ell^- \nu_\ell & (\textbf{B}_{tag}), & \ell = e, \mu \end{array}$

- First we assume τ is missing and the missing momentum is constrained on a cone around $p_{k\mu}$ and after using $\tau \rightarrow \pi \nu_{\tau}$, we constrain the missing momentum around $P_{k\mu\pi}$ cone.
- Intersection of these two cones, provides us the B_{sig} momentum with two folds ambiguity (p_{B1}, p_{B2}) and a discriminator variable sin ϕ .

Hadronic tagging

- To further reduce the background, we use information from tag side.
- In one of the preliminary studies [2], we used hadronic B-decays to reconstruct B_{tag} .

$B^+ \to I$	<+ τ⁻(→ π	⁻ ν _τ)μ+	$\left(\textbf{B}_{\text{sig}} \right)$
-------------	------------	---------------------------------	--

- $B^- \rightarrow hadrons$ (**B**_{tag})
- We used the minimum of the cosine angles [min.($cos\theta_1$, $cos\theta_2$)], to suppress the background further.
- We were able to get B_{sig} reconstruction efficiency of 2.2×10^{-3} and corresponding UL~10⁻⁵, which is quite optimistic to further work on this approach.

2. M. Kaleta, M.S thesis, Belle Collaboration. (https://docs.belle2.org/record/2549/files/BELLE2-MTHESIS-2021-071.pdf)

Semileptonic tagging

- We are using inclusive semileptonic (SL) tagging to reconstruct B_{tag} for further suppressing the background.
- We can constrain the missing momentum on $\mathsf{B}_{\mathsf{tag}}$ side on a cone around $p_{\mathsf{vis.tag}}$.

• We have the two sum of cosine angles, from which we pick the best one by using the following condition

$$\Delta \cos\theta = \min |\cos\theta_{1,2} + \cos\theta_{tag}|$$

Signal side veto selections

• We are using the following veto selections on the signal side.

BDT training

After applying the veto cuts, we are using six input variables in the BDT training.

Input variables = { ΔE_{Btag} , $\Delta cos\theta$, p_{Itag} , m_{ROE} , nLepton, nPhotons}

Variable importance

Ranking result (top variab	le	is best ranked)
Rank : Variable	:	Variable Importance
1 : #DeltaE_{Btag} 2 : tanh(Deltacostheta) 3 : m_{ROE}	:	2.682e-01 2.028e-01 1.670e-01
4 : p_{ltag} 5 : nPhotonsSelected 6 : nLepton	:	1.545e-01 1.303e-01 7.719e-02

BDT response

Hyper parameters of the BDT are yet to be optimized.

Punzi figure of merit

• For optimizing the BDT score, we are using the Punzi figure of merit.

$$FOM_{Punzi} = \frac{\epsilon(t)}{\frac{\alpha}{2} + \sqrt{B(t)}}$$

- $\varepsilon(t) = \text{signal efficiency}$
- α = desired significance
- B(t) = remaining background events

Optimal cut BDT > 0.10

Classifier	Input N _{sig}	Input N _{bg}	Optimal cut	FOM _{Punzi}	$\text{Final } N_{\text{sig}}$	Final N _{bg}	Signal eff.	Bg eff.
BDT	7326	1681	0.1041	8.8x10 ⁻⁵	4070	290	0.5556	0.1725

BDT response after optimal cut

Control mode B⁺ $\rightarrow J/\psi(\mu^+\mu^-)$ K⁺

 To further check our results, we are using the following decay as our first control channel mode.

 $\begin{array}{ll} B^{+} \to J/\psi \ K^{+} & (BF = 1.02 \times 10^{-3}) \\ & J/\psi \ \to \ \mu^{+}\mu^{-} & (BF = 5.973 \ \% \) \end{array}$

- Topology of this decay is similar to our signal decay.
- We assume that one μ is missing, so that it can replicate our signal decay reconstruction.
- Initial checks were performed on the dedicated MC.
- Further checks are performed on the full Belle data set and one stream of generic MC.

Selections for $B^+ \rightarrow J/\psi(\mu^+\mu^-) K^+$

-Additional variables (M_{bc} and ΔE) to use alongside other signal variables.

-Full Belle dataset -01 Streams of generic MC

 $|m_{J/\psi} - 3.1| < 0.03 \text{ GeV}$

 $M_{bc} > 5.27 \text{ GeV}$ 13

Selections for $B^+ \rightarrow J/\psi(\mu^+\mu^-) K^+$

Selections for $B^+ \rightarrow J/\psi(\mu^+\mu^-) K^+$

15

$\Delta cos\theta$ for $B^+ \rightarrow J/\psi(\mu^+\mu^-) K^+$

Control mode $B^+ \rightarrow \overline{D}^0(K^+\pi^-)\pi^+$

• To further check our results, we are using the following decay as our second control channel mode.

 $\begin{array}{rl} \mathsf{B}^{+} \to \overline{\mathsf{D}}^{0} \ \pi^{+} & (\mathsf{BF} = 4.61 \times 10^{-3}) \\ & \overline{\mathsf{D}}^{0} \ \to \ \mathsf{K}^{+} \pi^{-} & (\mathsf{BF} = 3.947 \ \%) \end{array}$

- Topology of this decay is also similar to our signal decay.
- We assume that $\pi^{\text{-}}$ is missing, so that it can replicate our signal decay reconstruction.
- We have performed the initial checks on the dedicated MC.
- We have also checked it on the Belle data set.

Selections for $B^+ \rightarrow D^0(K^+\pi^-)\pi^+$

-Full Belle dataset -01 Streams of generic MC

18

Selections for $B^+ \rightarrow \overline{D}^0(K^+\pi^-)\pi^+$

Selections for $B^+ \rightarrow \overline{D}^0(K^+\pi^-)\pi^+$

20

$\Delta cos\theta$ for $B^+ \rightarrow \overline{D}^0(K^+\pi^-)\pi^+$

Summary and Outlook

• By using BDT, we have got better signal to background ratio.

• In the preliminary control channel analysis, there is a reasonable agreement of shape between data and MC.

• Next we will work to include the other decay modes.

Reconstruction methodology

• We are using B2BII module for this analysis.

• We are right now working only on Belle environment and Belle II will be added later.

 $B^+ \rightarrow K^+ \tau^- (\rightarrow \pi^- \nu_\tau) \mu^+$

 $B^{\text{-}} \to X \, \ell^{\text{-}} \nu_{\ell}$

Particles selection

- **e**⁻ **selection:** d₀ < 1 cm, |z₀| < 4 cm, p > 0.05 GeV, eIDBelle >0.6, muIDBelle <0.98, atcPIDBelle(3,0) <0.98
- μ⁻ selection: d₀ < 1 cm, |z₀| < 4 cm, p > 0.05 GeV, muIDBelle >0.6, eIDBelle <0.98, atcPIDBelle(3,1) <0.98
- **K**⁻ **selection:** d₀ < 1 cm, |z₀| < 4 cm, p > 0.05 GeV, muIDBelle <0.98, eIDBelle <0.98, atcPIDBelle(3,2) >0.6
- π^+ selection: $d_0 < 1$ cm, $|z_0| < 4$ cm, p > 0.05 GeV, atcPIDBelle(3,2) <0.6
- π^{0} selection: 0.08 < $m_{\pi^{0}}$ < 0.18 GeV \triangleleft *For ROE only*
- Photons selection: goodBelleGamma==1 and pybdt_bb>0.3 and pybdt_fp>0.3

Figure of merit

-	Classifier	(#signal,	<pre>#backgr.)</pre>	Optimal-cut	S/sqrt(S+B)	NSig	NBkg	EffSig	EffBkg
-	BDT:	(7326,	1681)	-0.3864	77.2503	7307	1640	0.9974	0.9756
-	BDTG:	Ċ	7326,	1681)	-0.8996	77.21	7326	1677	1	0.9976
-	Fisher:	(7326,	1681)	-0.6159	77.2212	7323	1670	0.9996	0.9935
-	MLP:	(7326,	1681)	0.0729	77.2322	7322	1666	0.9995	0.9911

Correlation matrices

Correlation Matrix (background)

Correlation Matrix (signal)

ROC

DataSet	MVA		
Name:	Method:		ROC-integ
dataset	BDT	:	0.756
dataset	MLP	:	0.756
dataset	BDTG	:	0.748
dataset	Fisher	:	0.732