Heavy flavour physics

Lecture 3

Marcin Kucharczyk

IFJ PAN, Kraków 19 December 2024

Contents

Lecture 3

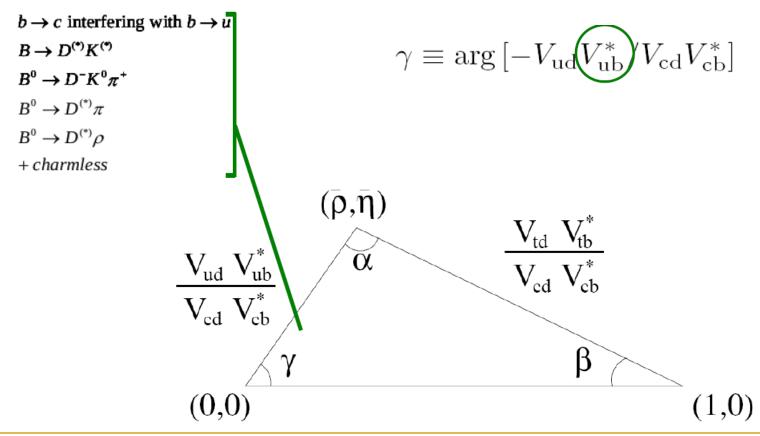
- ullet Measurement of CKM angle γ
- QCD penguins
- B_s mixing
- Electroweak penguins
- Higgs penguins

Measurements of CKM angles

3rd CKM measurement: y

Extract γ with B \rightarrow D^(*)K^(*) final states using:

- GLW: Use CP eigenstates of D⁰
- ADS: Interference between favoured and doubly suppressed decays
- GGSZ: Use the Dalitz structure of $D\rightarrow K_s h^+h^-$ decays



Measurement of y

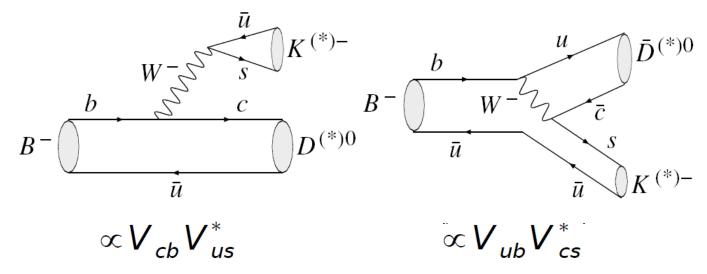
- Charmless B decays, eg. $B^0 \rightarrow K^+\pi^-$
 - → contributions from
 - P: $b \rightarrow su(bar)u$ penguin
 - T : $b \rightarrow usu(bar)$ tree
 - \rightarrow relative weak (CP violating) phase is γ
 - \rightarrow relative strong (CP conserving) phase δ

$$A_{CP} = 2|P||T|\sin(\gamma)\sin(\delta)/\{|P|^2 + |T|^2 + 2|P||T|\cos(\gamma)\cos(\delta)\}$$

- Hadronic uncertainties:
 - \rightarrow even if we observe $A_{CP} \neq 0$, cannot easily extract γ
 - → other processes also contribute
- A theoretically clean measurement of γ can be made using B \rightarrow DK decays
- Reconstruct D mesons in states accessible to both D⁰ and D⁰(bar)
 - \rightarrow interference between $b \rightarrow cu(bar)s$ and $b \rightarrow uc(bar)s$
 - \rightarrow relative weak phase is γ
 - → various different D decays utilized
 - → large statistical errors at present

The idea of measurement

Two possible diagrams for B⁻→DK⁻



- colour allowed
- final state contains D⁰

- colour suppressed
- final state contains *D*⁰(*bar*)
- ullet Relative magnitude of suppressed amplitude is $oldsymbol{r_B}$
- ullet Relative weak phase is $ullet \gamma$, relative strong phase is $oldsymbol{\delta}_{\mathcal{B}}$
- Need D^0 and $D^0(bar)$ to decay to common final state

Three ways to make DK interfere

GLW(Gronau, London, Wyler) method:

more sensitive to r_B

uses the CP eigenstates $D^{(*)0}_{CP}$ with final states:

$$K^+K^-$$
, $\pi^+\pi^-$ (CP-even), $K_s\pi^0$ (ω,ϕ) (CP-odd)

$$R_{CP\pm} = 1 + r_B^2 \pm 2r_B\cos\gamma\cos\delta_B ~~ A_{CP\pm} = rac{\pm 2r_B\sin\gamma\sin\delta_B}{1 + r_B^2 \pm 2r_B\cos\gamma\cos\delta_B}$$

ADS(*Atwood, Dunietz, Soni*) method: B^0 and \overline{B}^0 in the same final state with $D^0 \to K^+\pi^-$ (suppr.) and $\overline{D}^0 \to K^+\pi^-$ (fav.)

$$R_{ADS} = r_B^2 + r_{DCS}^2 + 2r_B r_{DCS} \cos \gamma \cos(\delta_B + \delta_D)$$

the most sensitive way to γ

D⁰ Dalitz plot with the decays B $^{\text{-}} \rightarrow D^{(^{\star})0}[K_{\text{S}}\pi^{\text{+}}\pi^{\text{-}}] K^{\text{-}}$

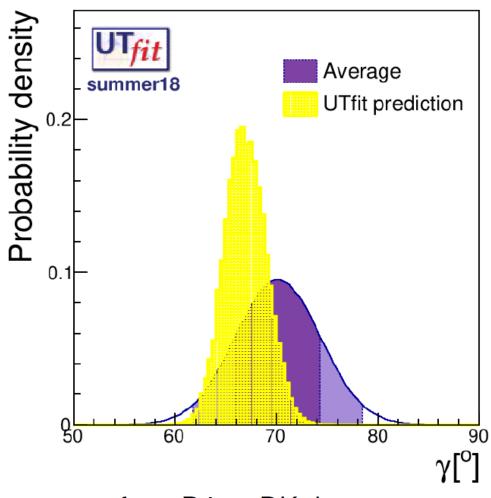
3 free parameters to extract: γ , r_B and δ_B

Constraint from *y*

Best constraint from combining all available results

• B
$$\rightarrow$$
DK, B \rightarrow D(*)K, B \rightarrow DK(*)

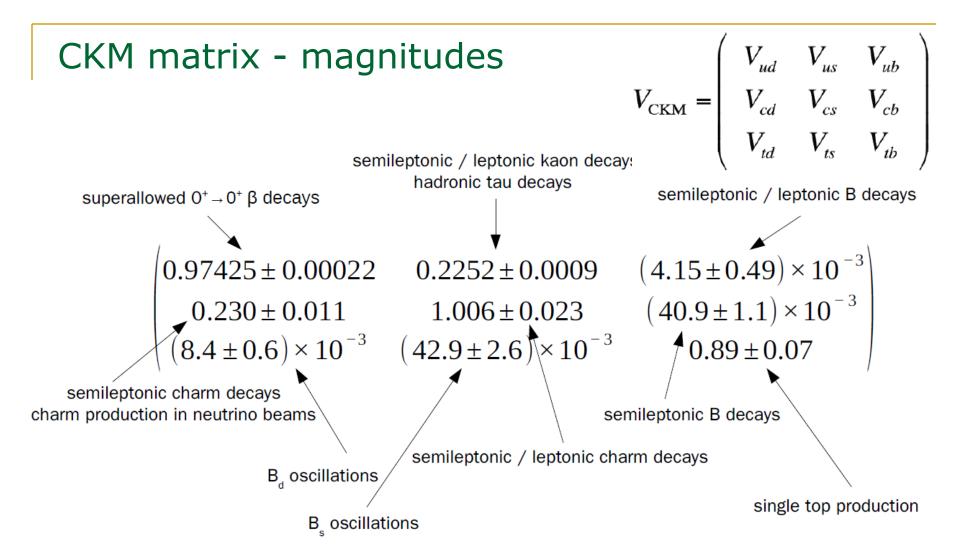
- Different D decays
 - \rightarrow D \rightarrow CP eigenstates
 - \rightarrow D \rightarrow suppressed states
 - (eg. *Кп*)
 - \rightarrow D \rightarrow multibody states
 - (eg. $K_S \Pi^+ \Pi^-$)



 γ from B into DK decays:

combined: $(73.4 \pm 4.4)^{\circ}$

UTfit prediction: $(65.8 \pm 2.2)^{\circ}$

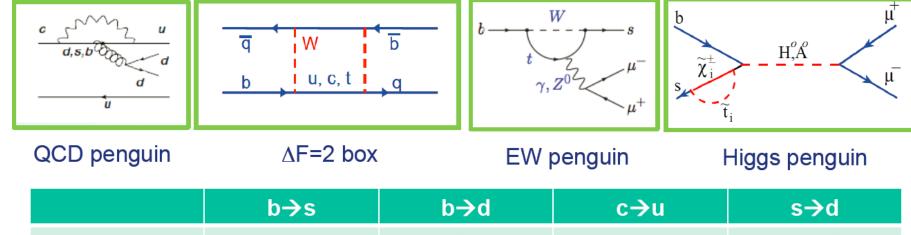


significant progress in many of these over the last few years (including some new results not yet in the PDG compilation)

7

FCNC loops in the SM

Map of flavour transitions and types of loop processes



	b→s	b→d	c→u	s→d
QCD penguin	$A_{CP}(B_s \rightarrow hhh)$	A _{CP} (B ⁰ →hhh)	∆a _{CP} (D→hh)	K→π ⁰ II ε' /ε
∆F=2 box	$A_{CP}(B_s \rightarrow J/\psi \phi)$	$A_{CP}(B^0 \rightarrow J/\psi K_s)$	x,y, q/p	$\Delta M_K \ \epsilon_K$
EW penguin	B→K (*) _{μμ} B→X _s γ	Β → πμμ Β → Χγ	D→X _u I I	Κ→π ⁰ ΙΙ Κ→π [±] νν
Higgs penguin	B _s →μμ	B ⁰ → μμ	D→μμ	K ⁰→μμ

QCD penguins

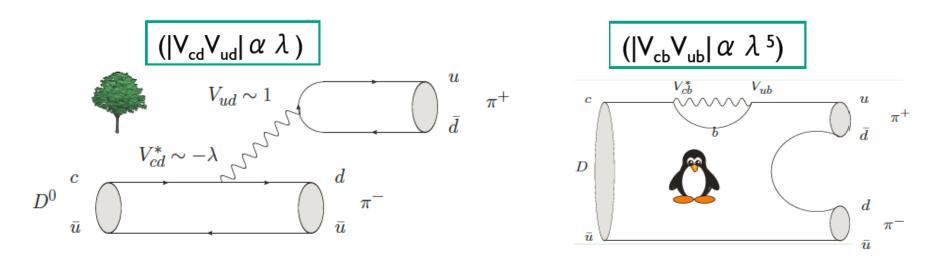
Search for CP violation in charm decays

Charm physics

- Neutral D meson offers the only chance to study $\Delta F = 2$ (mixing) phenomena among up-type quarks
- FCNC in decays can also be studied
- CP violation in the D system is tiny in the SM, and hence its study probes New Physics
 - → precise measurements needed to test realistic NP models

CP violation in charm

- Charm:
 - → direct CP violation (in decay) in SM is small
 - → could there be large direct CP violation in charm penguin decays?
 - \rightarrow CP violation O(1%) would be "clear sign for NP"



Time integrated A_{CP} has both direct and indirect components

CP violation in charm: ΔA_{CP}

$$A_{\text{raw}}(f) = A_{CP}(f) + A_{D}(f) + A_{P}(D^{*+})$$

- Physical CP asymmetry (very small)
- Detection asymmetry, cancels for $D^0 \rightarrow \pi\pi$, KK large O(1%)
- Production asymmetry

$$\Delta A_{CP} = A_{raw}(K^-K^+) - A_{raw}(\pi^-\pi^+) = A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+)$$

w/ U-spin symmetry: $A_{CP}(K^-K^+) = -A_{CP}(\pi^-\pi^+)$

CP violation in charm: ΔA_{CP}

- ΔA_{CP} cancels detector and production asymmetries to first order
- The SM, and most NP models, predict opposite sign for KK and пп
- Use of U-spin and QCD factorization leads to:

 $\Delta A_{CP} \sim 4$ penguin/tree $\sim 0.04\%$

Analysis:

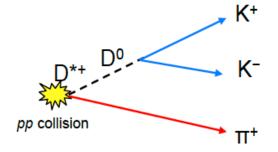
- LHCb performed two (experimentally orthogonal) measurements
- D*± → D⁰ [h+h-] π[±] pion's charge determines the flavour of D⁰
- Alternatively, using $\mathbf{B} \to \mathbf{D} \ \mu \mathbf{v}$ decays the muon's charge determines the flavour.
- Most of the systematics cancel in the subtraction, and are controlled by swapping the magnetic field

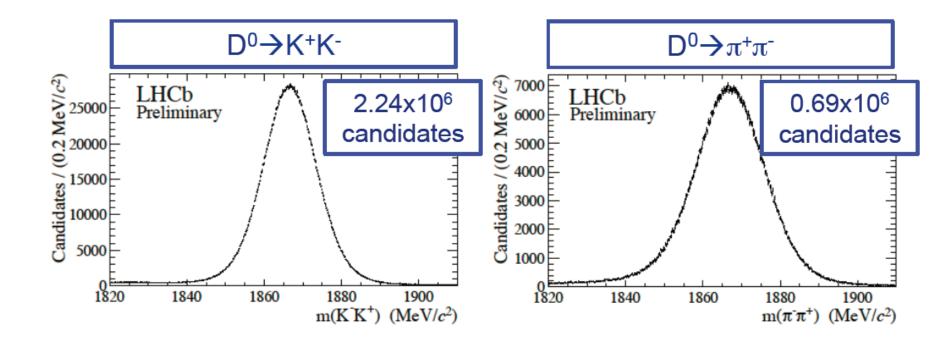
Measure CP violation: $D^{*+} \rightarrow D^0 \Pi^+$

• LHCb performed two independent measurements

$$\rightarrow$$
 "D* tagged": D* $^{\pm}$ \rightarrow D0 (\rightarrow K+K- or $\pi^{+}\pi^{-}$) π^{\pm}

- pion charge determines D⁰ production flavour



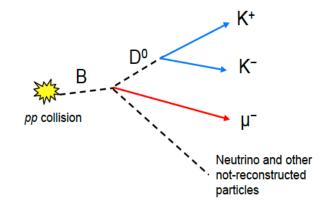


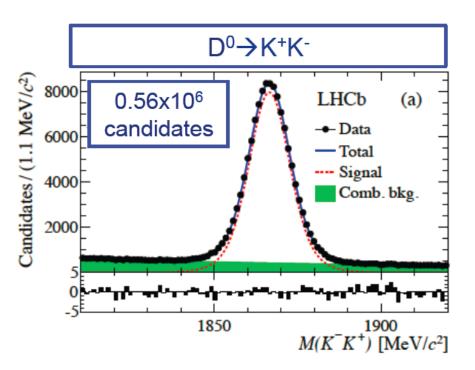
Measure CP violation: $D^{*+} \rightarrow D^0 \pi^+$

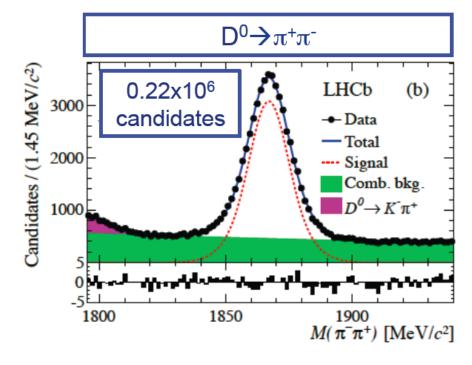
 LHCb performed two (experimentally orthogonal) measurements

 \rightarrow "Muon tagged": $B^{\pm} \rightarrow D^0$ (\rightarrow K+K- or $\pi^+\pi^-$) μ^{\pm} v X

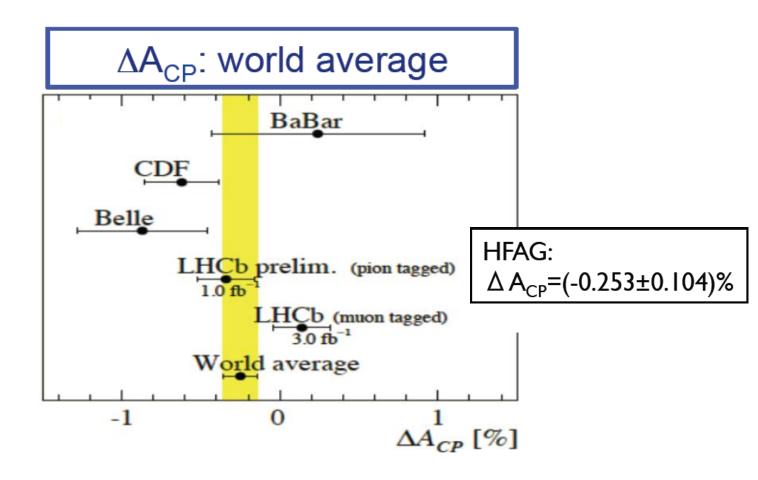
- muon charge determines D⁰ production flavour







Measure CP violation: $D^{*+} \rightarrow D^0 \Pi^+$

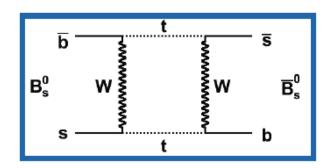


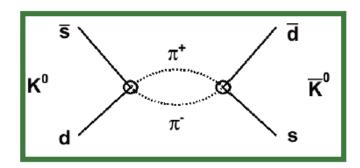
No significant evidence for CP violation Effects O(%) are out of the game $\Delta F=2$ boxes: B_s mixing

Neutral meson mixing

The eigenstates of flavour M^0 , anti- M^0 , degenerated in pure QCD, mix under weak interactions: M^0 : K^0 (anti-s d), D^0 (c anti-u), B^0 (anti-b d), B_s^0 (anti-b s)

Mixing can occur via short distance or long distance processes:





Time-dependent Schrödinger equation

$$i\frac{\partial}{\partial t} \left(\frac{M^0}{M^0} \right) = H \left(\frac{M^0}{M^0} \right) = \left(M - \frac{i}{2} \Gamma \right) \left(\frac{M^0}{M^0} \right)$$

H is Hamiltonian; **M** and Γ are 2x2 Hermitian matrices

CPT theorem: $M_{11} = M_{22} \& \Gamma_{11} = \Gamma_{22}$

→ particle and antiparticle have equal masses and lifetimes

Mixing formalism

Time evolution of B⁰ or B⁰(bar) can be described by an *effective* Hamiltonian

Hamiltonian

$$\mathcal{H} = M - \frac{i}{2}\Gamma = \begin{pmatrix} M & M_{12} \\ M_{12}^* & M \end{pmatrix} - \frac{i}{2}\begin{pmatrix} \Gamma & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma \end{pmatrix}$$
hermitian Mass term:
"dispersive" "absorptive"

Schrödinger equation

$$i\frac{d}{dt} \left(\begin{array}{c} |B^{0}(t)\rangle \\ |\overline{B}^{0}(t)\rangle \end{array} \right) = \mathcal{H} \left(\begin{array}{c} |B^{0}(t)\rangle \\ |\overline{B}^{0}(t)\rangle \end{array} \right)$$

Define the mass eigenstates (physical states): $|B_{H,L}\rangle = p|B^0\rangle \mp q|\overline{B}^0\rangle$

p & q complex coefficients that satisfy $|p|^2 + |q|^2 = 1$

Heavy and light mass eigenstates have time dependence: $|B_{H,L}(t)\rangle=e^{-(im_{H,L}+\Gamma_{H,L}/2)t}|B_{H,L}(0)\rangle$

Diagonalising → the mass and decay width difference

$$\Delta m = m_{B_H} - m_{B_L} = 2 |M_{12}|$$

$$\Delta \Gamma = \Gamma_L - \Gamma_H = 2 |\Gamma_{12}| \cos \phi$$

$$\phi = \arg(-M_{12}/\Gamma_{12})$$

S,L (short-, long-) or L,H (light, heavy) depending on values of $\Delta m \& \Delta \Gamma$ (1,2 usually for CP eigenstates)

Mixing formalism

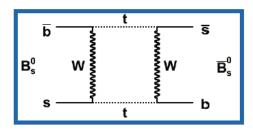
Solving the Schrödinger equation gives:

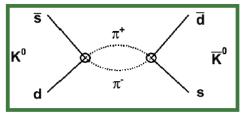
$$\frac{q}{p} = -\sqrt{\frac{M_{12}^* - i\Gamma_{12}^*/2}{M_{12} - i\Gamma_{12}/2}} \qquad \Delta m = 2 \operatorname{Re} \sqrt{(M_{12} - i\Gamma_{12}/2)(M_{12}^* - i\Gamma_{12}^*/2)}$$

$$\Delta \Gamma = 2 \operatorname{Im} \sqrt{(M_{12} - i\Gamma_{12}/2)(M_{12}^* - i\Gamma_{12}^*/2)}$$

- Δm: value depends on rate of mixing diagram
 - → short distance, virtual (off shell)

- → long distance, on shell states
- \rightarrow large for K⁰, small for D⁰ & B⁰



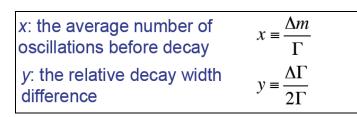


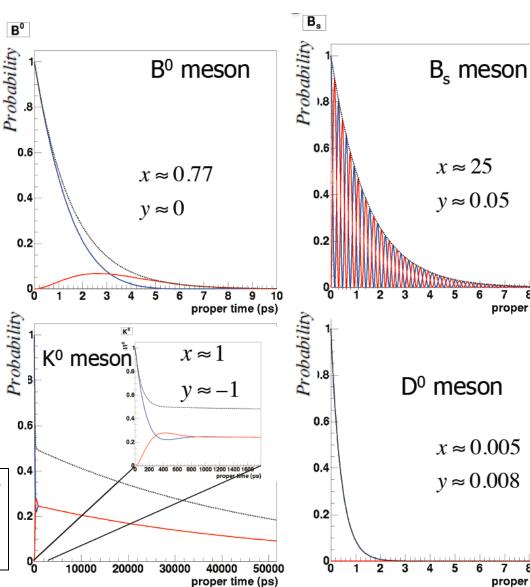
- q/p \approx 1 if arg(Γ_{12}/M_{12}) \approx 0 (|q/p| \approx 1 if M_{12} << Γ_{12} or M_{12} >> Γ_{12})
 - \rightarrow CP conserved if physical states = CP eigenstates (|q/p| =1)
 - \rightarrow CP violation in mixing when mass eigenstates \neq CP eigenstates $|q/p| \neq 1$

Mixing of neutral mesons

4 different neutral meson systems have very different mixing properties:

- B_s system
 - → very fast mixing
- Kaon system
 - → large decay time difference
- Charm system
 - → very slow mixing





proper time (ps)

proper time (ps)

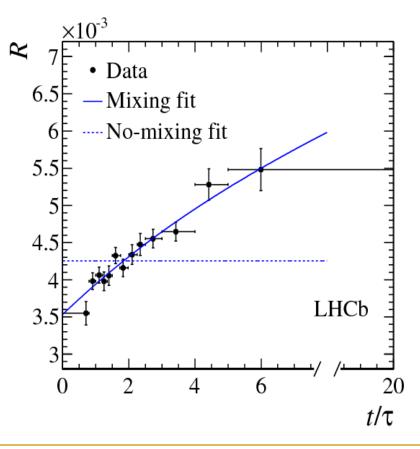
Kaon and charm mixing

Kaon mixing

- → CPLEAR experiment
 - tag strangeness of initial kaon using charge of associated kaon from production pp(bar) \rightarrow K+K⁰(bar) π / K-K⁰ π +

Charm mixing

- \rightarrow evidence (3 σ) for charm mixing in 2007 from BaBar & Belle
- → followed by further evidence from CDF
- combined significance of mixing overwhelming, but no single 5σ measurement until LHCb
- \rightarrow time-dependence of ratio of wrong-sign (WS) to right-sign (RS) D⁰ \rightarrow K π decays
 - WS/RS known by D^{*+} → $D^0\pi$ tag



B⁰-B⁰(bar) oscillations

First evidence

- Same sign leptons
 - → same flavour B mesons
- Mixing probability is large
 - → top quark is heavy
- Mixing probability: $r = 0.21 \pm 0.08$
- PDG 2006: $r = 0.188 \pm 0.003$
- From 103/pb of data

B mixing with current data sets

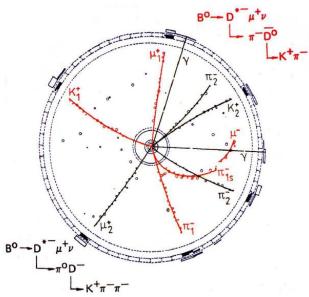
• Belle experiment (2005)

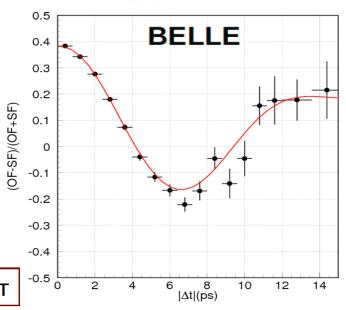
$$\Delta m = (0.511 \pm 0.005 \pm 0.006) \text{ ps}^{-1}$$

• From 140/fb of data

$$P(\Delta t) = (1 \pm \cos(\Delta m \Delta t))e^{-|\Delta t|}/2\tau$$

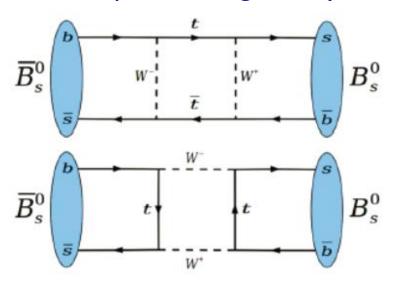
ARGUS experiment (1987)





B_s - B_s (bar) oscillations

Dominant Feynman diagrams (Standard Model)



These oscillations were first observed at the Tevatron in 2006:

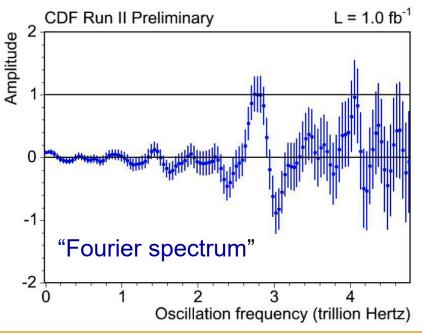
$$\Delta m_s = 17.77 \pm 0.10(\text{stat}) \pm 0.07 (\text{sys}) \text{ ps}^{-1}$$

Now this measurement has been repeated with much better precision by LHCb

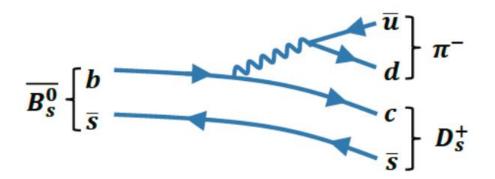
$$\Delta m_S = m_H - m_L = 2|M_{12}|$$

$$\Delta \Gamma_S = \Gamma_L - \Gamma_H$$

$$\phi_M = \arg(M_{12})$$

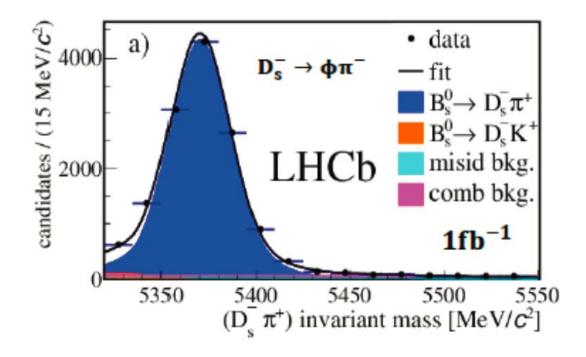


LHCb: Δm_s from $B_s \rightarrow D_s \Pi$



- Very high statistics
- Low background level
- Can resolve B_s mixing frequency due to high boost

Use flavour tagging to determine flavour at production, pion charge for flavour at decay



Flavour tagging at hadron colliders

Tagging efficiency

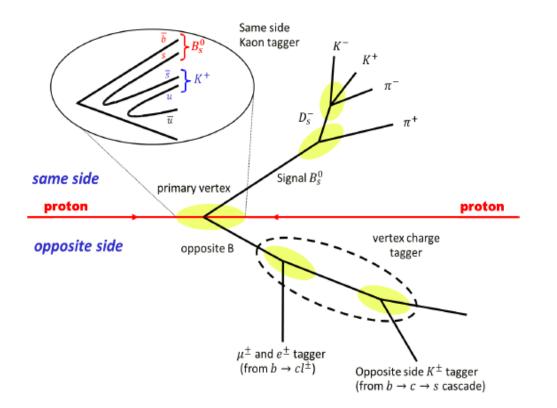
$$\varepsilon = \frac{\text{\# tagged candidates}}{\text{\# all candidates}}$$

Mistag probability

$$\omega = \frac{\text{\# tagged wrong}}{\text{\# tagged}}$$

Dilution

$$D = (1 - 2\omega)$$



- Opposite side taggers
 - exploits $b\bar{b}$ pair production by partially reconstructing the second B-hadron in the event
- Same side kaon tagger
 - exploits hadronization of signal B_s -meson
- Combined tagging power (in $B_s^0 \to D_s^- \pi^+$)

$$-\varepsilon D^2 = 3.5 \pm 0.5\%$$

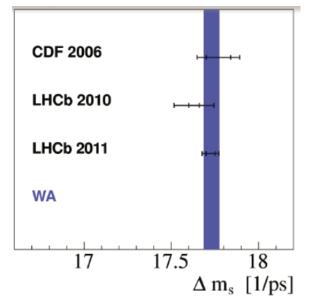
Compare this to e^+e^- colliders: $\epsilon D^2 \sim 30\%$

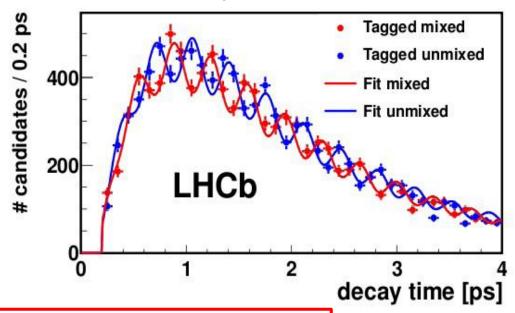
LHCb: Δm_s from $B_s \rightarrow D_s \Pi$

What is needed to measure Δm_s ?

- Resolve the fast B_s oscillations (\rightarrow average decay time resolution \sim 45 fs)
- Decays into flavour specific final state: $B_s \rightarrow D_s \pi$ (\rightarrow high BR $\sim 0.3\%$)
- Tag the B_s flavour at production
 - → high efficiency and low mistag rate
 - → tagging power: ~4%

Most precise measurement of Δm_s



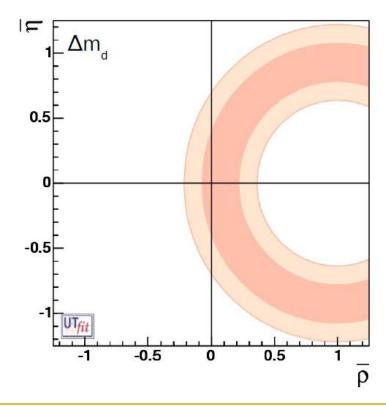


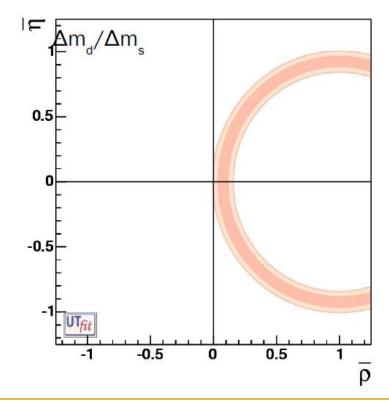
 $\Delta m_s = 17.768 \pm 0.023(stat) \pm 0.006(syst) ps^{-1}$

Constraints from mixing

- \bullet Δm_d contains information on $|V_{td}|$
- \bullet Δm_d / Δm_s preferred since theoretically cleaner

$$\rightarrow$$
 constraint on $R_t = \left| \frac{V_{td} V_{tb}^*}{V_{cd} V_{cb}^*} \right|$

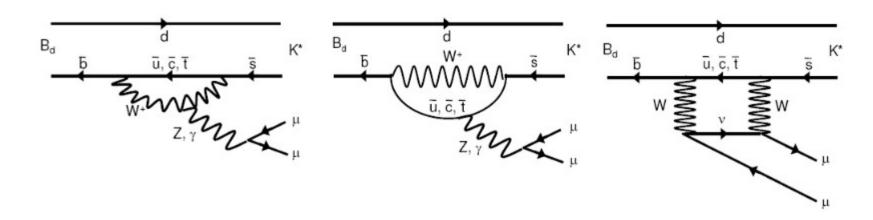




$\Delta F=1$: Electroweak penguins

$b \rightarrow s$ transitions

- b → s l⁺l⁻ processes also governed by FCNCs
 - → rates and asymmetries of many exclusive processes sensitive to NP
- Golden $\Delta F=1$ EW penguin decay: $B_d \rightarrow K^{*0} \mu^+ \mu^-$
 - → superb laboratory for NP tests
 - → experimentally clean signature
 - → many kinematic variables ...
 - \rightarrow with clean theoretical predictions (at least at low q²)



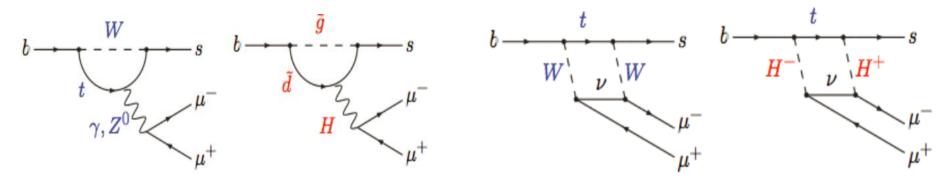
$b \rightarrow s$ transitions: theoretical framework

Describe $b \rightarrow s$ transitions by an effective Hamiltonian

$$H_{eff} = -\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* \sum_{i} \left[\begin{array}{c} C_i(\mu)O_i(\mu) + C_i'(\mu)O_i'(\mu) \\ \text{left-handed part} \end{array} \right] \\ \begin{array}{c} i=1,2 \\ \text{right-handed part} \\ i=3-6,8 \\ \text{Gluon penguin} \\ i=7 \\ \text{Photon penguin} \\ i=8,10 \\ \text{Electroweak penguin} \\ i=8 \\ \text{Higgs (scalar) penguin} \\ i=8 \\ \text{Higgs (scalar) penguin} \\ \text{Pseudoscalar penguin}$$

- long distance effects absorbed in the definition of the operators O_i
- interesting short distance can be computed perturbatively in Wilson coefficients C_i

$b \rightarrow s$ transitions are sensitive to: $O_7(')$, $O_9(')$, $O_{10}(')$

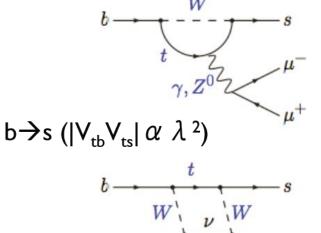


- $B^0 \rightarrow K^* \mu^+ \mu^-$ is the most prominent channel (large statistics & flavour specific)
- Studies with rarer $B_s \rightarrow \phi \mu^+ \mu^-$, $\Lambda^0_b \rightarrow \Lambda \mu^+ \mu^-$, ... have started

$B^0 \rightarrow K^* \mu^+ \mu^-$ - angular analysis

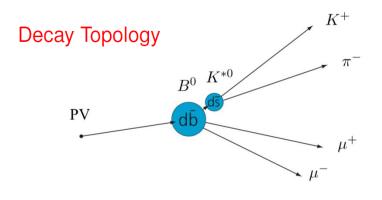
- $B^0 \to K^* \mu^+ \mu^-$ is the golden mode to test new vector(-axial) couplings in $b \to s$ transitions
- $K^* \to K\pi$ is self tagged, hence angular analysis ideal to test helicity structure
- Sensitivity to O₇, O₉ and O₁₀ and their primed counterparts:

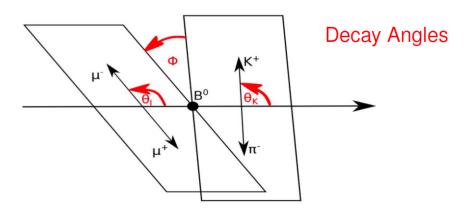
$$Q_7 = \frac{e}{g^2} m_b \, \bar{s} \sigma^{\mu\nu} (1 + \gamma_5) F_{\mu\nu}^{-1} b$$
 [real or soft photon]
 $Q_9 = \frac{e^2}{g^2} \bar{s} \gamma_\mu (1 - \gamma_5) b \, \bar{\ell} \gamma_\mu \ell$ [$b \to s \mu \mu \, \text{via } Z / \text{hard } \gamma$]
 $Q_{10} = \frac{e^2}{g^2} \bar{s} \gamma_\mu (1 - \gamma_5) b \, \bar{\ell} \gamma_\mu \gamma_5 \ell$ [$b \to s \mu \mu \, \text{via } Z$]



Right-handed currents:1- $\gamma_5 \rightarrow 1+ \gamma_5$

Decay topology





$B^0 \rightarrow K^* \mu^+ \mu^-$ - angular analysis

 $B^0 \to K^* \mu^+ \mu^-$ full decay rate is given as differential decay distribution

$$\begin{split} \frac{1}{\Gamma} \frac{\mathrm{d}^3(\Gamma + \bar{\Gamma})}{\mathrm{d}\cos\theta_\ell \, \mathrm{d}\cos\theta_K \, \mathrm{d}\phi} &= \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_\ell \right. \\ &- F_L \cos^2\theta_K \cos 2\theta_\ell + \\ &- S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + \\ &- S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + S_6^s \sin^2\theta_K \cos \theta_\ell + \\ &- S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + \\ &- S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \, \right] \end{split}$$

- Experiments typically measure sub-set of these observables by integrating out some parts
- Classical observable measured for the FIRST time by LHCb
- Results from B-factories and CDF very much limited by the statistical uncertainty

$B^0 \rightarrow K^* \mu^+ \mu^-$ - angular analysis

Folding technique ($\phi \rightarrow \phi + \pi$) for $\phi < 0$, reduces the nr of parameters to fit to four

By exploiting symmetries: this form can be reduced to ...

$$\hat{\phi} = \begin{cases} \phi + \pi & \text{if } \phi < 0\\ \phi & \text{otherwise} \end{cases}$$

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2}\frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2\,\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_K\,\mathrm{d}\hat{\phi}} = \frac{9}{16\pi}\left[\begin{matrix} F_\mathrm{L}\cos^2\theta_K + \frac{3}{4}(1-F_\mathrm{L})(1-\cos^2\theta_K) & -\cos^2\theta_K - \frac{3}{4}(1-F_\mathrm{L})(1-\cos^2\theta_K) & -\cos^2\theta_K - \frac{3}{4}(1-F_\mathrm{L})(1-\cos^2\theta_K)(2\cos^2\theta_\ell - 1) & +\cos^2\theta_K - \frac{3}{4}(1-F_\mathrm{L})(1-\cos^2\theta_K)(2\cos^2\theta_\ell - 1) & +\cos^2\theta_K - \frac{3}{4}(1-F_\mathrm{L})(1-\cos^2\theta_K)(1-\cos^2\theta_\ell)\cos^2\theta_\ell & +\cos^2\theta_K - \frac{3}{4}(1-\cos^2\theta_K)(1-\cos^2\theta_\ell)\cos^2\theta_\ell & +\cos^2\theta_K - \frac{3}{4}(1-\cos^2\theta_K)\cos^2\theta_\ell & +\cos^2\theta_K - \frac{3}{4}(1-\cos^2\theta_K)\cos^2\theta_K & +\cos^2\theta_K - \frac{3}{4}(1-\cos^2\theta_K)\cos^2\theta_K & +\cos^2\theta_K - \frac{3}{4}(1-\cos^2\theta_K)\cos^2\theta_K & +\cos^2\theta_K & +\cos^2$$

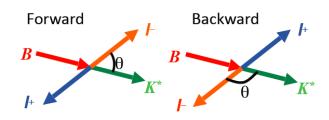
Simpler expression remains, sensitive to: F_L , A_{FB} , S_3 , A_9

 \rightarrow lost sensitivity to terms 4, 5, 7 and 8

$B^0 \rightarrow K^* \mu^+ \mu^-$ - Forward-Backward asymmetry

Hadronic uncertainties under reasonable control for:

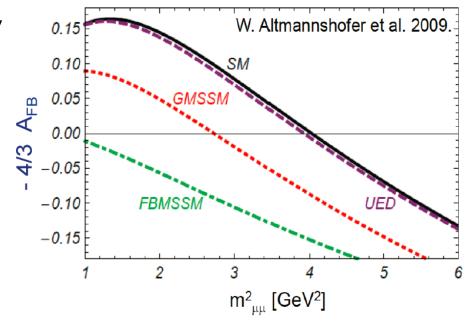
- \rightarrow **F**_L: Fraction of K* longitudinal polarization
- → A_{FB}: Forward-Backward asymmetry of lepton
- \rightarrow S₃ ~ A_T² (1-F_L): Asymmetry in K* transverse polarization



A_{FB} zero crossing point particularly well predicted within the SM

$$A_{FB} \propto -Re[(2C_7^{eff} + \frac{q^2}{m_b^2}C_9^{eff})C_{10}]$$

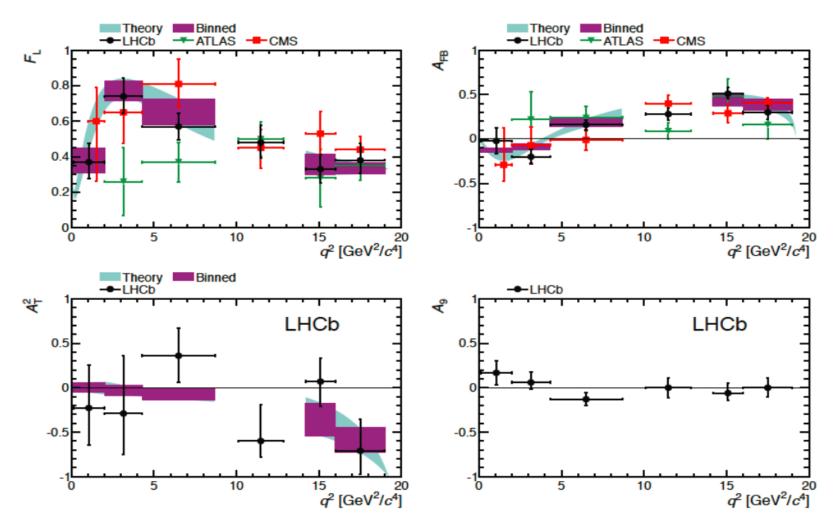
The SM forward-backward asymmetry in $b \rightarrow s l^+l^-$ arises from **interference** between \mathbf{y} and $\mathbf{Z^0}$ contributions



FBMSSM: GMSSM: UED: Flavor Blind MSSM Non Minimal Flavor Violating MSSM One universal extra dimension

$B^0 \rightarrow K^* \mu^+ \mu^-$ - angular analysis results

Generally very good agreement with SM in the observables F_L , A_{FB} , S_3 , A_9



LHCb 2012: First measurement of A_{FB} zero-crossing point: $q_0=4.9\pm0.9$ GeV²/c⁴

$B^0 \rightarrow K^* \mu^+ \mu^-$ - angular analysis results

- Earlier we lost sensitivity to 4 terms to simplify the fit
- Now: extract the observables relater to those terms!

Other folding techniques, applying different transforms, can give access to the

rest of observables:

S - standard observables

P - theoretically cleaner observables

$$P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_{L}(1 - F_{L})}}$$

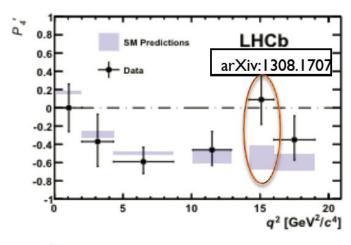
Local fluctuation in $P_5' > 3\sigma$ from the SM prediction has been observed

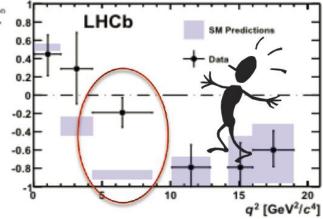
$$P_4', S_4: \begin{cases} \phi \to -\phi & \text{for } \phi < 0 \\ \phi \to \pi - \phi & \text{for } \theta_{\ell} > \pi/2 \\ \theta_{\ell} \to \pi - \theta_{\ell} & \text{for } \theta_{\ell} > \pi/2, \end{cases}$$

$$P_5', S_5$$
:
$$\begin{cases} \phi \to -\phi & \text{for } \phi < 0 \\ \theta_\ell \to \pi - \theta_\ell & \text{for } \theta_\ell > \pi/2, \end{cases}$$

$$P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_{L}(1-F_{L})}} P'_{6}, S_{7}: \begin{cases} \phi \to \pi - \phi & \text{for } \phi > \pi/2 \\ \phi \to -\pi - \phi & \text{for } \phi < -\pi/2 \\ \theta_{\ell} \to \pi - \theta_{\ell} & \text{for } \theta_{\ell} > \pi/2, \end{cases}$$

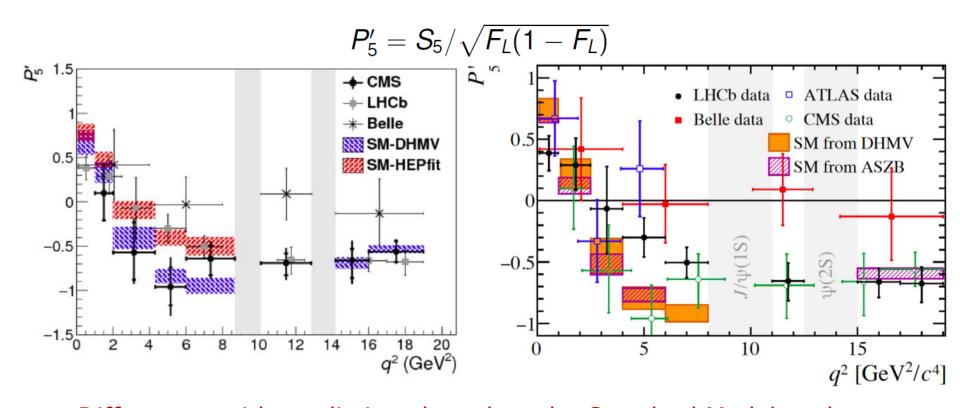
$$P_8', S_8$$
:
$$\begin{cases} \phi \to \pi - \phi & \text{for } \phi > \pi/2 \\ \phi \to -\pi - \phi & \text{for } \phi < -\pi/2 \\ \theta_K \to \pi - \theta_K & \text{for } \theta_\ell > \pi/2 \\ \theta_\ell \to \pi - \theta_\ell & \text{for } \theta_\ell > \pi/2. \end{cases}$$





$B^0 \rightarrow K^* \mu^+ \mu^-$ - angular analysis results

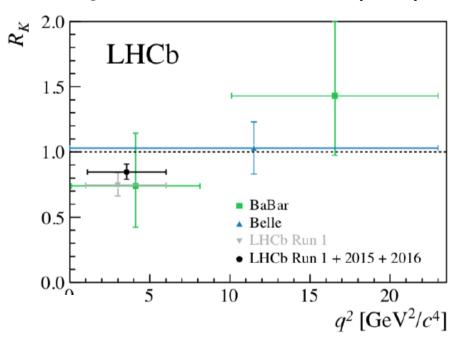
- LHCb performed first full angular analysis in 2016
 - → extracted full set of CP-averaged angular terms and correlations
 - → determined full set of CP-asymmetries

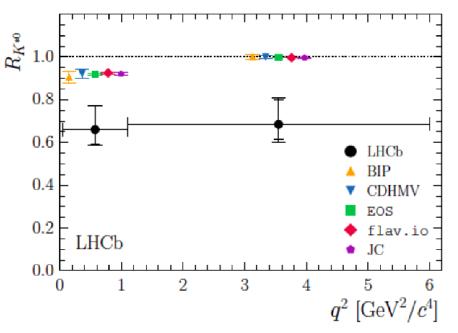


Differences with predictions based on the Standard Model at the level of 3.4 standard deviations

Lepton flavour universality tests

- In SM couplings of the gauge bosons to leptons are independent of lepton flavour
- Ratios of the form: $R_K = \frac{BR(B^+ \to K^+ \mu^+ \mu^-)}{BR(B^+ \to K^+ e^+ e^-)} \stackrel{\text{SM}}{\cong} 1$
- Free from QCD uncertainties that affect other observables
 - \rightarrow hadronic effects cancel, error is O(10⁻⁴)
 - \rightarrow QED corrections can be O(10⁻²)





SM compatibility:

~2.5 σ in 1.1 < q² < 6.0 GeV²

SM compatibility:

 $\sim 2.2\sigma$ in low q², $\sim 2.5\sigma$ in central q²

Interpretation of the anomaly

- Most of measurements in good agreement with SM predictions
 - \rightarrow only a hint of disagreement in P₅' at low q²
- But, anyway: interesting local discrepancy in P₅'
 - → few others tensions less significant in other observables
- Possibly due to:
 - → statistical fluctuation
 - → SM theoretical prediction not fully correct (QCD effects not fully understood...)
- New Physics:
- \rightarrow different value for some Wilson coefficients, e.g. C_9 , or C_9 and C_9 , including the possibility of Z' particle with a mass around few TeV

ΔF=1: Higgs penguins

$$B_s \to \mu^+ \mu^-$$

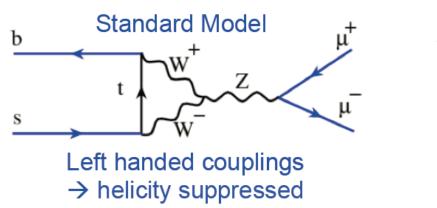
- Decay well predicted theoretically, and experimentally is exceptionally clean
- Within the SM, the time-integrated predicted value is very small:

$$BR(B_s \to \mu^+ \mu^-)^{SM} = (3.3 \pm 0.3) \times 10^{-9}$$

• Huge NP enhancement ($tan\beta$ = ratio of Higgs vevs)

$$BR(B_s \rightarrow \mu^+ \mu^-)^{MSSM} \propto \tan^6 \beta / M_{A0}^4$$

- Very sensitive to an extended scalar sector (e.g. extended Higgs, SUSY, etc.)
- Clean experimental signature

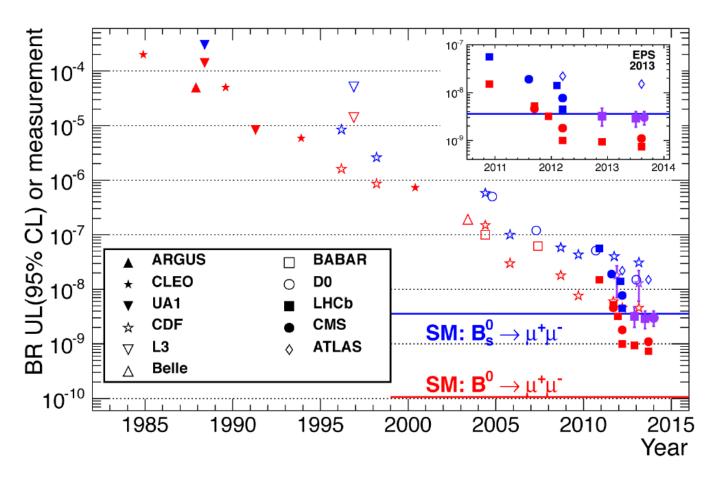




Killer for new physics discovery!

${B^0}_{(s)} \rightarrow \mu^+ \mu^-$

• It was considered one of the hottest channels for early NP discovery at LHC $(B_d \to \mu^+\mu^- \text{ also interesting...})$

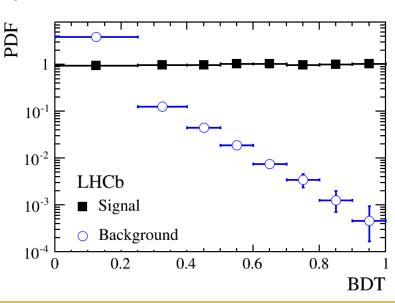


Searches over 30 years

19-12-2024 Marcin Kucharczyk 39

$B^0_{(s)} \rightarrow \mu^+ \mu^-$: analysis ingredients

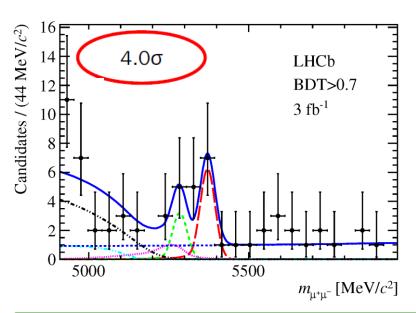
- Produce a very large sample of B mesons
- Trigger efficiently on dimuon signatures
- Reject background
 - → excellent vertex resolution (identify displaced vertex)
 - → excellent mass resolution (identify B peak)
 - also essential to resolve B⁰ from B_s⁰ decays
 - → powerful muon identification (reject background from B decays with misidentified pions)
 - → typical to combine various discriminating variables into a multivariate classifier
 - e.g. Boosted Decision Trees algorithm



$B_s \rightarrow \mu^+\mu^-$: latest results from CMS & LHCb

Nov 2012: LHCb found the first evidence for $B_s \to \mu^+ \mu^-$ using 2.1 fb⁻¹

- Update: full dataset: 3 fb⁻¹
 - improved BDT
 - expected sensitivity: 5.0σ

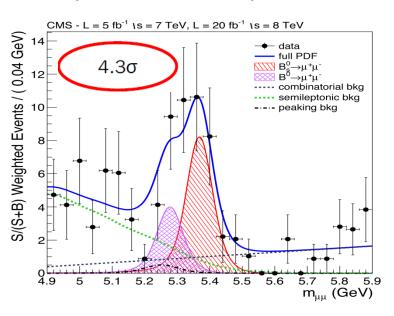


$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.9^{+1.1}_{-1.0}) \times 10^{-9},$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (3.7^{+2.4}_{-2.1}) \times 10^{-10}$

- Update to 25 fb⁻¹
 - cut based → BDT based

expected sensitivity: 4.8σ

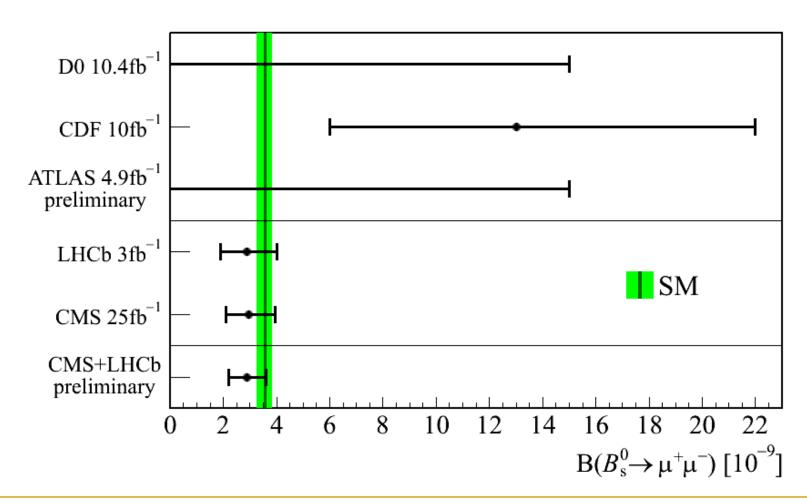


$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.0 {}^{+1.0}_{-0.9}) \times 10^{-9},$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (3.5 {}^{+2.1}_{-1.8}) \times 10^{-10}$

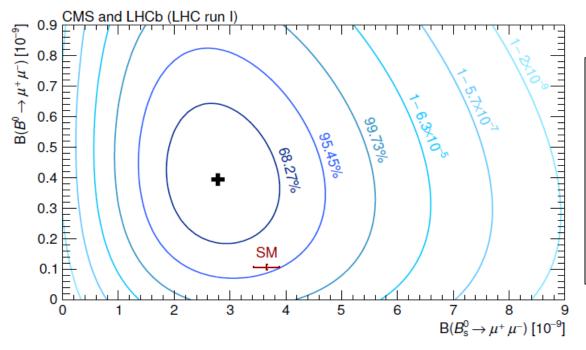
$B_s \rightarrow \mu^+\mu^-$: combined LHCb + CMS result

$$B(B_s^0 \rightarrow \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9}$$



Implications of $B_s \rightarrow \mu^+\mu^-$

The measured BR is compatible with the SM prediction



Strong constraints on many New Physics models

→ together with direct searches:

constrained MSSM models (almost) excluded

Important key measurements:

- ratio of decay rates of $B^0 \to \mu^+ \mu^-$ / $B_s \to \mu^+ \mu^-$
 - → allows e.g. to test of "Minimal Flavour Violation" hypothesis
- lifetime of $B_s \rightarrow \mu^+\mu^-$
 - → new, theoretically clean observable that is largely unconstrained