Heavy flavour physics

Lecture 2

Marcin Kucharczyk

IFJ PAN, Kraków 12 / 19 December 2024

Contents

Lecture 2

- Experimental facilities
- CKM matrix and types of CP violation
- Measurements of CKM angles β and α

Experimental facilities

Heavy flavour physics

- Focus in these lecture will be on
 - flavour changing interactions of **charm** and **beauty quarks**
- But quarks feel the strong interaction and hadronize
 - various different beauty hadrons
 - many possible decays to different final states

→ hadronization introduces great complications, BUT also increases the observability of CP violation effects

- Many aspects of flavour physics left out in this lecture
 - neutrino physics: have own phenomenology
 - light quark flavour physics
 - charged lepton physics
 - top-flavour physics: different, as the top does not hadronize

Rich phenomenology with beauty quarks

- The beauty quark ...
 - is the heaviest quark that forms hadronic bound states
 - \rightarrow high mass: many accessible final states
 - must decay outside the 3rd family
 - \rightarrow all decays are CKM suppressed
 - \rightarrow long lifetime of *B* meson (~1.6ps)
- Beauty-decays:
 - dominant decay process: "tree" $b \rightarrow c$ transition
 - very suppressed "tree" $b \rightarrow u$ transition
 - FCNC "penguin" $b \rightarrow s$ and $b \rightarrow d$ transitions
 - flavour oscillations ($b \rightarrow t$ "box" diagrams)
 - CP violation expect large CP asymmetries in some B decays

Where are B and D mesons produced

Flavour physics experiments

B-factories (BaBar & Belle)

- e⁺e⁻ experiment at SLAC / KEK
- Dedicated B-physics experiment

CDF II Detector

General purpose detectors (ATLAS, CMS, CDF, D0)

- Proton colliders @ CERN / Tevatron
- 4π multi purpose detectors

LHCb

- Proton colliders @ CERN
- Dedicated B-physics experiment

e⁺e⁻: Asymmetric B factories

Y(4S) resonance

Kinematics at e⁺e⁻ colliders

Symmetric collider: B-mesons produced almost at rest
 → short lifetime make flight distance unmeasurably small

- To measure t require B meson to be moving
 - $\rightarrow e^+e^-$ at threshold with asymmetric collisions

bb(bar) production at pp collider

LHC 2009-

More than 10¹² b-anti-b pairs (10⁹ at B-factories)produced already and growing.
 LHCb dedicated B-physics detector
 B-physics programs at CMS and ATLAS.

LHCb

Proton collisions

- Protons are complicated objects
 - valence & sea quarks, gluons
- Available energy of "proton" collision depends on partons

 $s' = x_1 \cdot x_2 \cdot s$

 $x_i = Bjorken x$ (fractional momentum) of parton

- Energy of particular collision unknown, but distributions known
 - hadron colliders "scan" a wide energy range
 - average s' ~ 0.1 s
 - dominant process @ LHC: gluon fusion

Event kinematics

In high energy collisions, bb(bar) pairs produced predominantly in forward or backward directions

- B hadron mass ~ 5 GeV
 - asymmetric x-values
 - strongly boosted ($\beta\gamma \sim 100$)
 - average flight length ~ 7mm
- Boost allows time dependent analyses of fast B_s mixing
- B hadron admixture:
 - 40% B⁰
 - 40% B±
 - 10% B_s
 - 10% $\Lambda_{\rm b}$
 - <1% others (B_c , B^* , B^{**} , ...)

b production at hadron colliders

	$e^+e^- \rightarrow \Upsilon(4s) \rightarrow B\overline{B}$ PEP-II, KEK-B	$p\overline{p} \rightarrow b\overline{b}X (\sqrt{s} = 2 \text{ TeV})$ TeVatron	$pp \rightarrow b\bar{b}X (\sqrt{s} = 14 \text{ TeV})$ LHC				
prod	1 nb	~100 µb	~500 µb				
typ. $b\overline{b}$ rate	10 Hz	~100 kHz	~500 kHz				
purity	~1/4	$\sigma_{b\bar{b}}/\sigma_{inel} \approx 0.2\%$	$\sigma_{b\bar{b}}/\sigma_{inel} \approx 0.6\%$				
pile-up	0	1.7	0.5-20				
B content	$B^{+}B^{-}(50\%), B^{0}\overline{B}^{0}(50\%)$	$B^+(40\%), B^0(40\%), B_s(10\%), B_c(<1\%), b - baryons(10\%)$					
B boost	small, βγ~0.56	large, decay vertices are displaced					
event structure	BB pair alone	many particles non-associated to $b\overline{b}$					
prod. vertex	Not reconstructed	reconstructed with many tracks					
$B^0 \overline{B}^0$ mixing	coherent	incoherent→ flavour tagging dilution					
bb production at hadron							

colliders

Flavour creation

Q

Flavour

excitation

Q

00000

(quark annihilation) (gluon fusion)

Flavour creation

G

Cococo Cococo

splitting

Gluon

Ű.

LHCb - single arm spectrometer

Detector requirements

Particle identification in the wide momentum range (2 - 100 GeV/c)

- background reduction if kinematic separation not sufficient

Fast and efficient trigger system

- selection of interesting events from large background

Fast data aquisition system

LHC flavour physics programme

ATLAS / CMS

- Central detectors, $|\eta| < 2.5$
- High Luminosity (>10³⁴cm⁻²s⁻¹)
 → high pileup ~20
- Trigger
 - Relatively low rate (~200-400Hz)
 - High PT muon triggers
- Analysis
 - Mostly modes with dimuons
 - Limited flavour tagging
- Particle identification
 - Excellent muon ID
 - Limited K / π separation

<u>LHCb</u>

- Forward spectrometer, 1.9< η < 5
- Lower Luminosity (4x10³²cm⁻²s⁻¹)
 → pileup ~1.5
- Trigger
 - High trigger rate (~2kHz)
 - Muon & hadron triggers, softer thresholds
 - Large bandwidth for charm
- Analysis
 - Hadronic and low M modes accessible
 - Excellent flavour tagging & σ_t
- Particle identification
 - Excellent muon ID
 - Dedicated RICH PID (K / π)

Key issues for B physics: data statistics

Full dataset (Run I): ATLAS = CMS = 10 * LHCb

Key issues for B physics: *momentum and mass* resolution

	momentum resolution	mass resolution J/ψ-→μμ		
LHCb	бр/р = 0.4-0.6 %	13 MeV		
CMS	δpt/pt = 1-3 %	40 MeV		
ATLAS	δpt/pt = 5-6 %	71 MeV		

Key issues for B physics: IP and PV resolution

Primary vertex resolutions (25 tracks):

	Lł	LHCb [µm]		ATLAS [µm]		ım]	CMS [µm]
σ(x)		15.8		60			20-40
σ(y)		15.2		60			20-40
σ(z)		76		100			40-60
		ATLAS	CN	1S	CDF	LHCb	
l	Decay time esolution (B _s)	~100 fs	~7() fs	87 fs	45 fs	

Key issues for B physics: particle identification

Key issues for B physics: particle identification

• Results of the simulation of B decays showing the necessity of particle ID

Key issues for B physics: trigger system

LO – high p_{τ} signals in calorimeters & muon chambers

HLT1 – associate L0 signals with tracks & displaced vertices

HLT2 – inclusive signatures + exclusiveselections using full detector information

Challenge is

pp scattering

decays

Handles

CKM matrix and types of CP violation

Over-constraining the Unitarity Triangle

 $B \to \pi \pi$ (isospin), $B \to \rho \pi$, $B \to \rho \rho$

$$R_b (b \to u, c\ell \bar{\nu}_{\ell}) \xrightarrow{\boldsymbol{\alpha}} R_t (B_q^0 - \bar{B}_q^0 \text{ mixing}) \xrightarrow{\boldsymbol{\beta}} \left\{ \begin{array}{c} B_d \to \pi^+ \pi^- \\ B_s \to K^+ K^- \end{array} \right\}_{\boldsymbol{\beta}} \end{array}$$

 $B \to \pi K \text{ (penguins)} \qquad B_d \to \psi K_S (B_s \to \psi \phi : \phi_s \approx 0)$ $B_u^{\pm} \to K^{\pm} D \\ B_d \to K^{*0} D \\ B_c^{\pm} \to D_s^{\pm} D \end{cases} \text{ only trees} \qquad B_d \to \phi K_S \text{ (pure penguin)}$

$$\begin{array}{l} B_d \to D^{(*)\pm} \pi^{\mp} : \ \gamma + 2\beta \\ B_s \to D_s^{\pm} K^{\mp} : \ \gamma + \phi_s \end{array} \right\} \text{ only trees}$$

Phases and CP-Violation

CP violation: $|\mathcal{A}(B \to f)|^2 \neq |\mathcal{A}(\bar{B} \to \bar{f})|^2$

Within weak interaction, moving from particle to antiparticle, system amplitudes are complex conjugated

No CP violation if:

- There is only one amplitude contributing to the decay: $|\mathcal{A}|^2 = |\mathcal{A}^*|^2$
- The sum of two amplitudes, where both are complex conjugated, by moving from particle to antiparticle system:

$$|\mathcal{A}_1 + \mathcal{A}_2|^2 = (\mathcal{A}_1 + \mathcal{A}_2)(\mathcal{A}_1^* + \mathcal{A}_2^*) = |\mathcal{A}_1^* + \mathcal{A}_2^*|^2$$

For CP violation one needs two complex amplitudes, where one of them is complex conjugated and one is not by moving from particle to antiparticle system

Phases and CP-Violation

CP violation: interplay of weak (ϕ) and strong (δ) phases

 A_1 i A_2 need to have different weak phases ϕ and different strong phases δ Strong phases are notoriously difficult to compute

Categories of CP violation

Consider decay of neutral particle to a CP eigenstate

$$\Lambda_{CP} = \frac{q}{p} \frac{\overline{A}}{A}$$

1) Indirect CP violation, or CPV in **mixing**:

 $\frac{|q|}{p} \neq 1$

2) Direct CP violation, or CPV in **decays**:

$$\left|\frac{\overline{A}}{A}\right| \neq 1$$

3) CP violation in interference between mixing and decay:

$$\Im\left(\frac{q\,\overline{A}}{p\,A}\right)\neq 0$$

3 types of CP-Violation: In mixing

1) CP violation in mixing: CP eigenstates \neq mass eigenstates

Mixing occurs via box diagrams: $\Delta F = 2$ transitions

 $C^2 + S^2 + D^2 = 1$

• SM predictions for - neutral kaon system - neutral D meson system - B_d^0 system $\frac{d}{u, c, t}$ $\frac{d}{v}, c, t}$

The 4 different neutral meson systems have very different mixing properties

- In case of a CP eigenstate: time evolution of the neutral mesons generates a "strong phase" ~sin(∆mt)
- CP asymmetries become time dependent: $A_{CP}(t) = \frac{C \cos(\Delta m t) S \sin(\Delta m t)}{\cosh(\Delta \Gamma t/2) + D \sinh(\Delta \Gamma t/2)}$
- Two eigenstates:

– B_s⁰ system

 $\Delta m = m_1 - m_2$ $\Delta \Gamma = \Gamma_1 - \Gamma_2$

 $\Delta\Gamma \sim 0$ for B_d $\Delta\Gamma$ not negligible for B_s

direct CP violation $\rightarrow C \neq 0$ CP violation in interference $S \neq 0$

3 types of CP-Violation: In decays

- **2)** Direct CP violation condition: $|A(bar) / A| \neq 1$
 - need A and A(bar) to consist of (at least) two parts with different weak (ϕ) and strong (δ) phases
 - often realised by "tree" and "penguin" diagrams

3 types of CP-Violation: In interference

3) CP violation in interference between mixing and decay

Same final state through decay & mixing + decay

$$\mathcal{A}_{1} = \mathcal{A}_{mix}(B^{0} \to B^{0}) * \mathcal{A}_{decay}(B^{0} \to J/\Psi K_{s})$$

$$= \cos(\frac{\Delta mt}{2}) * A * e^{i\omega}$$

$$\mathcal{A}_{2} = \mathcal{A}_{mix}(B^{0} \to \bar{B^{0}}) * \mathcal{A}_{decay}(\bar{B^{0}} \to J/\Psi K_{s})$$

$$= i\sin(\frac{\Delta mt}{2}) * e^{+i\phi} * A * e^{-i\omega}$$

 $\Delta\phi=\phi-2\omega \text{ (assume no CP violation in mixing and in decay)} \\ \Delta\delta=\pi/2\Leftarrow \text{mixing introduce second phase difference}$

Measurements of CKM angles

1st CKM measurement: $sin(2\beta)$

- Theoretically cleaner (SM uncertainties $\sim 10^{-2}$ to 10^{-3})
 - \rightarrow tree dominated decays to charmonium + $\rm K^{0}$ final states

 $sin(2\beta)$: Golden decay $B^0 \rightarrow J/\psi K_s$

$$\overline{B}{}^0\!\!\to J\!/\!\psi\;K_{\!s}$$

• Leading-order tree decays to cc(bar)s final states

- \rightarrow here the CKM elements contributing are $V_{cb}V*_{cs}$ that in Wolfenstein CKM parametrisation have no phase
- The CP conjugated case is also leading to (about) the same final state:

$sin(2\beta)$: Golden decay $B^0 \rightarrow J/\psi K_s$

• Because both *B* and *B(bar)* can decay to this common final state, this can interfere with the oscillation diagram:

 \rightarrow requires knowledge of production flavour of the B

$sin(2\beta)$: Golden decay $B^0 \rightarrow J/\psi K_s$

The colour-suppressed tree dominates

- \rightarrow subleading $b \rightarrow sc(bar)c$ penguin has (predominantly) the same weak phase
- \rightarrow CKM-suppressed pollution by penguins **golden channel**
- $|A(bar)| = |A| \Rightarrow$ no direct CP violation
- C = 0 & S = $-\eta_{CP} \sin(2\beta)$
 - \rightarrow sine term has a non-zero coefficient \rightarrow there is CP violation in the interference between mixing and decay amplitudes in cc(bar)s decays
- reasonable branching fraction & experimentally clean signature

How can we measure decay time in $e^+e^- \rightarrow Y(4S) \rightarrow B^0B^0(bar)$?

- the answer: asymmetric-energy B factory (e.g. Belle)
- key points
 - \rightarrow Y(4S) \rightarrow B⁰B⁰(bar) produces coherent pairs
 - \rightarrow *B* mesons are moving in LAB frame

$sin(2\beta)$: Belle measurement

What do we have to do to measure $A_{CP}(t)$?

- step 1: produce and detect $B^0 \rightarrow f_{CP}$ events
- step 2: separate B⁰ from B⁰(bar)
- step 3: measure the decay time *t*

$sin(2\beta)$: Compilation of results

$sin(2\beta)$: Compilation of results

2nd CKM measurement: $\boldsymbol{\alpha}$ angle

- $b \rightarrow uu(bar)d$ transitions with possible loop contributions. Extract α using:
 - SU(2) isospin relations
 - SU(3) flavour related processes

Measurement of $\boldsymbol{\alpha}$

• Time-dependent CP violation in modes dominated by $b \rightarrow uu(bar)d$ tree diagrams probes α (or $\pi - (\beta + \gamma)$)

 \rightarrow C = 0 & S = $+\eta_{CP} \sin(2\alpha)$

- *b* → *du(bar)u* penguin transitions contribute to same final states
 - \rightarrow "penguin pollution"
 - \rightarrow C \neq 0 \Leftrightarrow direct CP violation can occur
 - \rightarrow S \neq + η_{CP} sin(2 α)

In this case the penguin diagram is not CKM suppressed so it spoils the clean measurement of the CP violation effect

- Two approaches (optimal approach combines both)
 - \rightarrow try to use modes with small penguin contribution
 - \rightarrow correct for penguin effect (isospin analysis)

$$C_{hh} \propto \sin(\delta)$$

$$S_{hh} = \sqrt{1 - C_{hh}^2} \sin(2\alpha_{eff})$$

$$\delta = \delta_p - \delta_T$$

Measurement of $\alpha: B^0 \rightarrow \pi\pi$

$B^0 \to \pi\pi$

 easy to isolate signal for π+π⁻ and π+π⁰ as these modes are relatively clean and have relatively large BR ~ O(5×10⁻⁶) _{φ300}

- \rightarrow no tracks in the fnal state to provide vertex info
- $\rightarrow B^0 \rightarrow \pi^0 \pi^0 \rightarrow \gamma \gamma \gamma \gamma \gamma$ has a large ΔE resolution
 - possible to separate flavour tags to measure C
 - this completes set of information required for an isospin analysis

Measurement of $\alpha: B^0 \to \pi^+\pi^-$

Measurement of α : *Isospin analysis*

Use triangle construction to find difference ($\delta \alpha$) between " α_{eff} " and α

• requires measurement of rates and asymmetries of $B^+ \rightarrow \pi^+ \pi^0 \& B^0 \rightarrow \pi^0 \pi^0$

- nn states can have I = 2 or I = 0
 - \rightarrow the gluonic penguins contribute only to the I = 0 state ($\Delta I{=}1/2)$
 - $\rightarrow \pi^{+}\pi^{0}$ is a pure I = 2 state ($\Delta I = 3/2$) and it gets contribution only from the tree diagram
 - \rightarrow triangular relations allow for the determination of the phase diference induced on α

Both BR(B⁰) and BR(B⁰(bar)) have to be measured in all the nn channels

 $\delta \alpha = \alpha_{\text{eff}} - \alpha$

 $2\delta_{\alpha}$

 $\frac{\tilde{A}^{+-}}{\sqrt{2}}$

 $\widetilde{A} = e^{i2\sqrt{\gamma}} \bar{A}$

 A^{00}

 $\frac{1}{\sqrt{2}}A^{+-} + A^{00} = A^{+0}$

 $\frac{1}{\sqrt{2}}\overline{A}^{+-} + \overline{A}^{00} = \overline{A}^{+0}$

 ${\widetilde A}^{00}$

 $A^{+0} = \tilde{A}^{-0}$

Measurement of α : *Isospin analysis*

There are SU(2) violating corrections to consider, for example electroweak penguins (\sim 5%), but these are much smaller than current experimental accuracy and eventually they can be incorporated into the isospin analysis

Marcin Kucharczyk

Measurement of $\alpha: B^0 \to \rho \rho$

- vector-vector modes: angular analysis reaquired to determine the CP content_{0.4}
 - L=0,1,2 partial waves:
 - \rightarrow longitudinal: CP-even state
 - \rightarrow transverse: mixed CP states
- isospin analysis:

 \rightarrow possible contribution from $\rho^{0}\rho^{0}$

• wide ρ resonance

But

- BR 5 times larger with respect to пп
- penguin pollution smaller than in пп
- *ρ* are almost 100% polarized:
 - \rightarrow almost a pure CP-even state

from $n\pi$, $\rho\rho$, $n\rho$ combined $\alpha = (93.3 \pm 5.6)^{\circ}$