High-Energy Heavy-Ion Collision Physics

Part 2: Selected experimental results

Adam Trzupek adam.trzupek@ifj.edu.pl Institute of Nuclear Physics PAS 6 February 2025

 The main goal is to understand the dynamics of dense and hot medium created in relativistic heavy-ion collisions

 Based on the calculations of the QCD lattice model, it is expected that in nuclear collisions at high energy, there are sufficient conditions to create QGP

Heavy-Ion Colliders LHC @ CERN RHIC @ BNL

CMS ALICE	EHC BRS AT	PHOBOS PHENIX LINAC BOOSTER AGS	HIC STAR
Species	$\sqrt{s_{NN}}$ (TeV)	Species	$\sqrt{s_{NN}}$ (GeV)
Pb+Pb	2.76, 5.02, 5.36	Au+Au	7.7-200 (BES)
Xe+Xe	5.44	p+p	up to 500
p+Pb	5.02, 8.16	Other collisions at RHIC:	
p+p	2.76, 5.02, 8, 13	p+Al, p+Au, d+ Cu+Cu, Cu+Au,	Au, ³ He+Au, O+O, Zr+Zr, Ru+Ru, U+U ₂

Soft Particle Production in Heavy-Ion Collisions

A Heavy-Ion Collision in ATLAS Experiment

Run Number: 168665, Event Number: 246577 Date: 2010-11-08 12:25:35 CET

> Snapshot of a heavy ion collision directly from the ATLAS experiment

Particle Production in Heavy-Ion Collisions $\langle dN_{ch}/d\eta \rangle$ pp(pp), INEL AA, central Pb+Pb, 2.76, 5.02 TeV Au+Au, 19.6, 130, 200 GeV ALICE ALICE ALICE at LHC PHOBOS at RHIC 2000 CMS CMS ATLAS UA5 Lines - RDM model central PHOBOS PHOBOS ISR PHENIX 400 Lp/Np 1000 BRAHMS pA(dA), NSD STAR ALICE \times NA50 PHOBOS Lines: **s**0.155/0.103 500 0 -5 10 -10 $\eta \quad (= -\ln \tan \frac{\theta}{2})$ 10^{2} 10^{3} 10^{4} 10 $\sqrt{s_{_{\rm NN}}}\,({\rm GeV})$ Collision energy in QGP, Bjorken formula $\mathcal{E} = \frac{dE_t}{dy} \frac{1}{A\tau} \approx \frac{3}{2} (\langle m_t \rangle \frac{dN}{dy}) \frac{1}{A\tau} \approx \frac{1}{2} \sim 20 \text{ GeV/fm}^3 - \text{RHIC}$ ε E_t is the total transverse energy A overlap area of two colliding ions τ is the thermalization time $\varepsilon \gg \varepsilon_c \sim 1 \, \text{GeV/fm}^3$

 $\mathbf{y} = \frac{1}{2} \ln \frac{(E + p_{\parallel})}{(E - p_{\parallel})}$

 $\varepsilon \gg \varepsilon_c \sim 1 \text{ GeV/fm}^3$ Signature for dense medium (QGP) ₅

Radial Flow - p_T-Spectra of Identified Particles

Carry information about the dynamics of interactions in QGP

Two component spectrum:

Soft part ($p_T \leq 2 \text{ GeV}$) - spectra are exponential and become flatter with increasing particle mass.

$$T_{eff} \approx T_{fo} + \frac{m_h < \beta_T >^2}{2}$$
 Blast Wave Fit: $\beta \approx 0.76$

Signature of collective radial flow

Probing QCD Phase Diagram with HI Collisions

- Changing beam energy leads to changes in the temperature and μ_{B} of the system
- Grand Canonical Ensemble model (THERMUS) used to measure the temperature and μ_B of the system, using the RHIC BES data

Strangeness Enhancement - QGP Signature

Strangeness is newly produced (no s-Quarks in nucleons)

J. Rafelski and B. Müller, Phys. Rev. Lett. 48, 1066 (1982) – predictions

Energy needed to produce $s\bar{s}$ pair $\approx 200 \text{ MeV}$ (>2m_s)

Azimuthal Anisotropy (Collectivity)

Azimuthal Anisotropy of Produced Particles

Signature of strongly interacting QGP

- Anisotropy is "driven" by asymmetry in initial geometry
- Pressure gradients lead to azimuthal anisotropy (collectivity) $\frac{dN}{d\phi} \propto 1 + \sum_{n} 2v_n \cos[n(\phi - \Phi_n)] \qquad v_n = < \cos(n(\phi - \psi_{RP})) >$ $\sum_{n=2}^{n} \sum_{n=3}^{n=3} \sum_{n=4}^{n=4} \sum_{n=5}^{n=5} \sum_{n=6}^{n=6}$

• **v₂** – elliptic flow, dominant harmonic

Azimuthal Anisotropy in 5.02 TeV Pb+Pb Collisions

• $\Phi_{\rm RP}$ is approximated by event plane obtained from FCal, ψ_2

- Large azimuthal flow is observed, v₂ dominates
- Hydrodynamic models well describe v_n harmonics
 - QGP as almost ideal fluid (small viscosity)

RHIC's Major Discovery \rightarrow QGP *paradigm shift*

Puzzling Collectivity in Small Systems

Significant anisotropy was also observed in pp collisions at the LHC (first by CMS, JHEP 1009:021, 2010)

However, more studies are needed to address open questions

• Is QGP present in small collision systems?

Hard Particle Production in Heavy-Ion Collisions

Hard Particle Production in Heavy-Ion Collisions

• Hard particles ($p_T \gtrsim 2$ GeV) originate from hard parton scatterings, at large Q, before QGP formation

Jet – Collective Spray of Hadrons

- Jet: a bunch of collimated particles in a narrow R cone generated by hadronization of a common source
- At the LHC, hard processes lead to abundant jet production

2-jet Event (dijet) in the ATLAS Experiment

Jets in Vacuum

Jets in Medium

In heavy-ion collisions, additional processes are present due the QGP

- Shower particles interact with the medium and can radiate additional gluons or be scattered out of the jet cone
- Jets loose energy in the medium

X.-N. Wang and M. Gyulassy, PRL 68 (1992) 1480

Measure of Jet Production Modification

• Nuclear-modification factor:

(or T_{AA} if cross-sections are compared)

 $R_{AA}=1 \rightarrow \text{scaling}$

 $R_{AA} < 1 \rightarrow$ suppression (aka quenching)

 $R_{AA} > 1 \rightarrow$ enhancement

R_{AA} can be measured for different objects: jets, Z, pions, ...

20

$\pi^0 R_{AA}$ in 200 GeV Au+Au Collisions (RHIC)

p_T dependence in different centrality intervals:

- R_{AA} for π^0 measured up to $p_T = 20$ GeV (central Au+Au)
- $R_{AA} \approx 0.2$ in central Au+Au up to highest $p_T(5 < p_T < 20 \text{ GeV}) \text{strong suppression}$

Historical Remark Jet Quenching - 23 Years Ago Next RHIC's Major Discovery → QGP paradigm shift

Discovery of a strong "jet" suppression \rightarrow QGP a strongly

- Suppression of jet yield is observed in central Pb+Pb collisions
- A weak decrease of suppression with p_T is observed
- Same magnitude of R_{AA} is seen between 2.76 TeV and 5.02 TeV

Outlook

High-Energy Heavy-Ion Collisions

Facility	RHIC	LHC/HL-LHC	SppC / FCC-hh
Timeline	→ 2025	→ 2041 (Runs 3 to 6)	> 2035 / > 2070
Collision system	pp, d-Au, Au-Au	pp, p-Pb and A-A (Pb-Pb, ¹⁶ O, ¹²⁹ Xe, ⁸⁴ Kr, ⁴⁰ Ar,)	FCC: pp, p-A and A-A (Pb-Pb, ¹²⁹ Xe, ⁸⁴ Kr, ⁴⁰ Ar,)
$\sqrt{s_{NN}}$ (TeV)	0.2	5.5	~39
Int. rate (kHZ)	~15 (Au-Au)	\gtrsim 50 (x 3-4 in Run5) for Pb-Pb	~2500 (FCC)
Experiments	sPHENIX, STAR	ALICE, ATLAS, CMS, LHCb phase II of ATLAS and CMS phase II-b of ALICE and LHCb	up to four experiments

Luciano Musa (CERN), QM 2023

- General future goals of HI collisions at the LHC
- Future accelerators FCC/SppC will open completely new opportunities for heavy-ion collision physics

LHC/HL-HLC timeline for Heavy-Ion Run 3/Run 4

See <u>talk</u> M. R. Alemany Fernandez

- Continue with one-month ion runs at the end of the year
- Two more ion runs planned in Run 3
- O-O and p-O collisions last week of June 2025
- In Run 4 three ion runs planned

LHC/HL-HLC timeline for Heavy-Ion Run 3/Run 4

- Continue with one-month ion runs at the end of the year
- Two more ion runs planned in Run 3
- O-O and p-O collisions last week of June 2025
- In Run 4 three ion runs planned

Summary

- QCD ab initio calculations predict existence of deconfined phase in heavy-ion collisions
 - Phase transition to QGP at $T_c \sim 155$ MeV
- Dynamical features of the hot and dense medium created in heavy-ion collisions
 - Energy density ~20x critical energy density for QGP formation
 - Significant strangeness enhancement
 - Very strong radial flow, $\beta \approx 0.7$
 - Strong elliptical flow QGP behaves as nearly ideal fluid
 - Strong suppression of jets and high $p_{\rm T}$ particles
 - Many others interesting results (heavy-flavour, Z/W, photo-nuclear...)
- Significant azimuthal anisotropy observed in small systems

Significant part of the HI programme at the LHC is ahead as well as plenty of exciting physics

References: Quark Matter Conferences websites/proceedings

• e.g. see sessions for students

Historical Remark - Large Azimuthal Anisotropy at RHIC

First RHIC's Major Discovery in 2000 → QGP Paradigm Shift Discovery of strong "elliptic" flow consistent with hydrodynamical calculations -> QGP as almost perfect fluid

Heavy Ion Collision Event

2 Forward Calorometers (FCal) are used for RP approximation: 3.2<| η |<4.9. Tracks from Inner Detector are used for flow harmonics determination: | η |<2.5

$$v_n = < \cos(n(\phi - \psi_{RP})) >$$

ATLAS

Elliptic Flow, v_2

Strong azimuthal anisotropy in ultra-relativistic HI collisions