Heavy Ion Collision Physics

Part 1

Adam Trzupek adam.trzupek@ifj.edu.pl Institute of Nuclear Physics PAS 30 January 2025

KISD, Lecture: Particle physics for specialists

- The main goal is to understand the dynamics of dense and hot medium created in heavy-ion collisions
- Quantum Chromo-dynamics (QCD), theory describing strong interactions between quarks and gluons

Quantum Chromo-Dynamics (QCD) (layman's view)

- Theory describing strong interactions between quarks and gluons which make up hadrons, like proton or neutron
- Quark fields: ψ_i^f fermion particles and anti-particles of spin 1/2 flavor: f = d, u, s, c, b, t (mass m_f and fractional electric charge) color triplet charge: i = 1, 2, 3 (named: green, red, blue)
- Gluon fields: $A_{\mu,a}$ force mediators of spin-1, m_g =0, color octet charge: a= 1,...,8 (e.g. $g\overline{b}$, ...)
- QCD Lagrangian: $\mathcal{L}_{QCD}(\psi, A) = \sum_{f} \overline{\psi}_{i}^{f} \left[(i\partial_{\mu}\delta_{ij} - gA_{\mu,a}(t_{a})_{ij})\gamma^{\mu} - m_{f}\delta_{ij} \right] \psi_{j}^{f}$ $\int_{f} \frac{1}{4} \left[\partial_{\mu}A_{\nu,a} - \partial_{\nu}A_{\mu,a} - gC_{abc}A_{\mu,b}A_{\nu,c} \right]^{2}$ Interaction terms $\int_{g} \frac{1}{4} \left[\partial_{\mu}A_{\nu,a} - \partial_{\nu}A_{\mu,a} - gC_{abc}A_{\mu,b}A_{\nu,c} \right]^{2}$ Interaction terms

R. Soldati

- QED screening weakens ee interactions at larger distances or small Q
- QCD anti-screening weakens quark-quark strong interactions at shorter distances or high Q , $\alpha_s = \frac{g^2}{4\pi}$ decreases with increasing Q

• In the weak coupling limit ($\alpha_s <<1$) perturbative expansion works \Rightarrow precise results

Color Confinement (long distance or Low Q)

- Color charged quarks and gluons cannot be isolated
- Lattice QCD model was developed to solve non-perturbative problems
 - Perturbative QCD breaks down in the strong coupling limit ($\alpha_{s}{\sim}$ 1)
- QCD is formulated at a discrete space-time grid $N_s^3 \times N_\tau$

American Scientist

Fermionic degrees of freedom are on the sites while links represent gauge degrees of freedom Physical observables are obtained via performing path integrations with the QCD Lagrangian $e^{-\int L_{QCD}}$ as a weight

• QCD lattice using modern MC simulation require extensive calculations on large supercomputers

QCD lattice: Cornell Potential

Direct theoretical evidence that quarks are confined

Static quark potential in SU(3) gauge theory

Color Confinement

 In QCD gluons fields between quarks are squeezed to a string/flux tube due to gluon self-interactions

QCD fields

- If large amount of energy is supplied to one quark, the string, "breaks" and forms a new colourless quark—antiquark pair
 - Therefore, color charged quarks and gluons cannot be isolated

A Historical Remark

• 1964: Quark Model discovery

M. Gell-Man, G. Zweig

• 1973: Discovery of asymptotic freedom in QCD marks the beginning of QCD as the theory of strong interactions

D. Gross, F. Wilczek, D. Politzer (2004 Nobel Prize)

- Quark Model + Yang-Mills gauge theory
- 1975: Prediction of a deconfined phase
 - J.C. Collins and M.J. Perry, *Superdense Matter or Asymptotically Free Quarks?*, PRL **34**, 1353
 - Deconfined phase in neutron stars

The deconfined phase of quark and gluons, called "quark soup", was later called "quark-gluon plasma (QGP)" due to analogies to similar phenomena in other physics branches

Thermal Behavior of QCD

- Direct theoretical evidence of a phase transition in QGP in hot and dense medium (Lattice QCD)
- Calculations show a rapid but a smooth transition (crossover)

Rapid rise in the energy density at T_c -> rise in # degrees of freedom

- T_c of 150–200 MeV, $\varepsilon_c = 1-3$ GeV/fm³ ~(6 \mp 2)T_c⁴
- T=155 MeV $\sim 10^{12}$ K , Sun core: $T_{\it Sun} \sim ~10^7$ K

Quark Anti-quark Potential vs T

- 1.2 The free energy of quark F₁(r) [GeV] anti-quark pair as function 1 of separation r 0.8 0.6 0.4 155 MeV 162 MeV 0.2 170 MeV 178 MeV 0 194 MeV -0.2 $V(r) \sim -\alpha/r + \sigma r$ r [fm] -0.4 0.2 0.4 0.6 0.8 1.2
- The long-range force between quarks at high T (\gtrsim 155 MeV) vanishes ($\sigma \searrow 0$ for large r)
 - deconfined phase

QCD Phase Diagram Quark-Gluon Plasma deconfined, Critical point χ-symmetric Hadronic matter $\frac{\text{confined}}{\chi - \text{SB}}$ Colour superconductor Nuclei UB

 Baryon chemical potential measures the imbalance between matter and antimatter

QGP in Cosmology

- QGP existed about $\sim 10 \ \mu sec$ after the big bang
 - Then the temperature of the universe was about 100 000 times larger than the temperature at the center of Sun

Stages of Ultra-relativistic Heavy-ion Collisions (scenario with QGP)

- The space time evolution starts from a hot-fireball in a pre-equilibrium phase (τ_0 <1 fm/c)
 - Color Glass Condensate -> Glasma ?
- Equilibrate state, thermalization, QGP
 - Deconfined state
 - Nearly perfect fluid hydrodynamical expansion
- Cross-over phase transition from QGP to a hadron gas (T_c).
- Emitting of different kinds of particles measured in the detector (T_{chem}, T_{kin})

Most Powerful Heavy Ion Collider (LHC)

 $^{208}_{82}Pb$: 4.5 →72 MeV (LIER) → 5.9 GeV (PS) → 177 GeV (SPS)→ 2.68 TeV (LHC)

- The LHC consists of a 27-km ring of superconducting magnets located approximately 100 m below the surface
- Record collision energy, for Pb ions $\sqrt{s_{NN}}$ = 5.4 TeV
- First lead ion collisions in the year 2010

Relativistic Heavy Ion Collider

- RHIC circumference is 3.8 km
- Maximal collision energy for gold ions $\sqrt{s_{NN}}$ = 200 GeV
- First gold ion collisions in the year 2000

Probing QCD Phase Diagram with HI Collisions

ATLAS at LHC as a Heavy Ion Detector

LHC Data Sets

Datasets collected during:

- Run 1 (2010-2012)
- Run 2 (2015-2018)
- Run 3 (2022->2026)

Reference data

 Species
 √s_{NN} (TeV)

 Pb+Pb
 2.76, 5.02, 5.36

 Xe+Xe
 5.44

 p+Pb
 5.02, 8.16

 p+p
 2.76, 5.02, 5.36, 8

In Run 2, 10 times more Pb+Pb collisions than in Run 1

In Run 3 there will be ~3 times more Pb+Pb collisions than in Run 2 Run 4 will start in 2030 after major LHC and ATLAS upgrades (HL-LHC)

In small systems QGP effects are switched off \rightarrow calibrate initial conditions in heavy ions 18

Layout of a Heavy-ion Collision

- nucleons participating in at least 1 inelastic collision, N_{part}
- spectator nucleons

 $N_{\mbox{\scriptsize coll}}$ the number of binary nucleon-nucleon collisions in a heavy ion reaction

Lorentz factor:
$$\gamma = \frac{\sqrt{s_{NN}}}{2m_pc^2} = 2676$$
 for Pb+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

Heavy-ion Collisions of Different Centrality

Centrality Determination in Pb+Pb Collisions

 Pb+Pb events are divided into centrality bins according to measured total transverse energy in forward calorimeter (FCal, 3.1<|η|<4.9)

 MC simulations with Glauber model used for determination: N_{coll} - number of binary NN interactions N_{part} - number of participating (wounded) nucleons T_{AA} - nuclear thickness function ~ N_{coll}

backups

QCD predictions for the spectrum of hadrons

Using the lattice leads to predictions for the spectrum of hadrons

 Predictions from lattice-QCD agree with experimental measurements for wide variety of hadrons including light- and heavy-hadrons and proton-neutron mass difference (-1.7 MeV)

QCD Vacuum

- Quark bound states (hadrons) have large mass wrt small quark masses
 e.g. m(uud)~1% m
 - e.g. m(uud)~1% m_p
- Lattice QCD provides evidence that ground state is a quark-gluon condensate which interactions with quarks contribute to their masses

Derek Leinweber physics.adelaide.edu.au

 Spontaneous breaking of chiral symmetry by the formation of quarkgluon condensate

• Chiral symmetry: L_{\rm QCD} invariance wrt independent rotation of $\psi_{
m R}$, $\psi_{
m L}$