

Proton radiotherapy of moving targets at the Cyclotron Centre Bronowice

PhD, Eng Agnieszka Wochnik Research and Development Laboratory

Thursdays for the young at IFJ PAN 13.06.2024

Outline

- 1. CCB current status
- 2. Radiotherapy of moving targets
- 3. Clinical implementation
- 4. Robust 4D dose evaluation
- 5. Summary and conclusions

Cyclotron Centre Bronowice - current status

- First and still the only proton radiotherapy center in Poland
- Collaboration with the National Institute of Oncology National Research Institute (NIO-PIB), Krakow Branch (Gliwice branch for pediatric patients)
- Fully utilized its **potential** technical possibilities and staff workload
- Developed scientific activities and international colaborations

NIO-PIB, Krakow branch

Experimental Hall, CCB

Cyclotron Centre Bronowice - current status

- 28 completed therapies for patients with moving targets
- radiotherapy conducted until late in the evening
- implementation of scientific projects

Cyclotron Centre Bronowice – indications

head and neck area perimedullary area cerebrospinal axis

First patient in CCB!

head and neck area paraspinal area "re-treatment" head and neck area Hodgkin's lymphoma or non-Hodgkin's lymphoma (...) in mediastinum First patient with moving target!

What are moving targets?

- their position varies during treatment due to both internal organ motion and/or respiratory motion
- chest and abdominal areas
- motion affects not only dose to a target, but also to organs-at-risks (OARs)

Werner R et al, Radiat Oncol. 2017, 19;12(1):100. doi: 10.1186/s13014-017-0835-7.

What are moving targets?

(Paganetti, Proton Therapy Physics , 2012)

- a) Changes in head density over the entire treatment period.
- b) Interfractional changes in the position of the femoral heads.
- c) Intrafractional changes in the position of a lung tumor

The impact of changes in medium density on the path of a proton beam:

- Breathing lung expansion
- Gas bubbles increased proton range
- Tumor reduction irradiation of healthy tissues

Dose delivery to a moving target

4D radiation therapy (X, Y, Z, Time)

- imaging: 4DCT motion assessment
- Free-Breathing (FB)
- Respiratory gating
- Deep-inspiration breath-hold (DIBH)
- Robust 4D dose evaluation

Influenced by uncertantites:

- Interplay effect
- Dose blurring
- Dose degradation

Presentation of an interplay effect for a lung cancer case: a) reference (nominal) plan and b) perturbed dose distribution (K.Czerska, doctoral dissertation, 2022)

Proton radiotherapy of moving targets at CCB

Deep-Inspiration Breath Hold - limiting radiation exposure mainly to the heart!

https://www.fvhospital.com/learn-more/deep-inspiration-breath-hold-and-active-breathing-coordinator/

- Hodgkin's lymphoma or non-Hodgkin's lymphoma in children and adults up to 40 years requiring mediastinal irradiation
- Proton radiotherapy preceded by 3-6 cycles of combined chemotherapy
- Area treated: mediastinum + lymph nodes in the neck and/or axillary area

Tools available for 4D treatment in CCB

Tools available:

• Patient immobilization accessories

Qfix thermoplastics masks

Qfix supine breast & lung

- Orthogonal X-ray Imaging for verifying patient position
- AlignRT Optical patient positioning system SGRT (Surface Guided Radiation Therapy)

visionrt

Clinical implementation (1)

- 1. Preparing for immobilization
- 2. Learning to breathe (approx. 30-60 s. of breath-hold)
- At least 3 visits to the CCB
- an informational brochure for home exercises

https://www.visionrt.com/applications/dibh/

https://iconcancercentre.sg/en/technique/deep-inspiration-breath-hold/

Clinical implementation (2)

- 3. Computed tomography
 - FD "FullDose" (120kV, 2mm slice)
 - LD "LowDose" (70kV, 2mm slice)
- 4. Treatment planning
 - Prescribed dose: 2Gy x 15 = 30 Gy
 - Required margins
 - Directions of therapeutic beams (330-30 st)
- 5. Dosimetric verification
- 6. Irradiation

FD: CT scan for planning treatment

LD: CT scan for mobility assessment

Clinical implementation (3)

AlignRT system

- Patient Positioning
- 3D Surface Matching Algorithm
- Graphical Visualization of Surface Mismatch

DIBH vs FB treatment plans

Free breathing plans were made for 6 patients treated at CCB using the DIBH technique:

- heart dose reduction approx. 30-40% •
- lung dose reduction approx. **10-15%** •

DIB

FB

Robust dose evaluation in radiotherapy

Robust analysis = dose stability assessment

Consideration of uncertainties - patient movement, anatomical changes, dose delivery uncertainties, setup and density errors

- → Minimizing the risk of inaccurate irradiation
- → "What-if" scenario simulations
- → Better tumor control
- → Reduced side effects

https://www.raysearchlabs.com/media/webinars/

Agnieszka Wochnik, 13.06.2024 Thursdays for the young at IFJ PAN

4DCT patient scan

Multiple CT scans of the same anatomical region over time

- → Visualization of organ motion
- → Spatial and temporal information

→ 10 independent CT scans

corresponding to 10 respiratory phases

- → Average-Value-CT (AVE-CT)
- → Maximum Intensity Projection-CT (MIP-CT)

Source uncertainties in 4D proton therapy

- Source uncertainties:
 - setup errors
 - range errors

- 3D —►
- How to deal with it?
 - isocenter shift
 - CT calibration curve

- breathing motion/anatomy changes
- machine errors
- interplay effect/dose blurring

- 4DCT
- machine log files

interpretation

Monte Carlo simulations

Treatment scenarios in 4D proton therapy

Treatment scenarios:

- setup errors: +/- 2mm in X, Y and Z direction
- range errors: density (HU) scalling by -3.5%, +3.5%

breathing cycle start point: 0, 1, 2, 3 and 4 s

4D

Robust 4D dose evaluation in proton therapy

4D robust plan recalculation for single fraction

Tools available for robust 4D dose evaluation in CCB

- 1. Machine log-files interpreter
 - ➔ for extracting essential information related to irradiation, including temporal data, from the machine log files
 - → in-house software

AS A RESULT: table with important information (time, layer, energy, range, position, intensity, gantry angle, couch angle etc) for each spot

Tools available for robust 4D dose evaluation in CCB

- 2. GPU-accelerated FRED Monte Carlo code
 - ➔ for fast and precise alternative dose calculations
 - → on a desktop computer
 - → quick calculations approx. 650 scenarios in max. several hours

Fred

- 3. FREDTools
 - → for data analysis

Tools available for robust 4D dose evaluation in CCB

- 4. Deformable image registration
 - for tracking changes in the position of a patient's internal organs over time (open-source Plastimatch software)

Evaluation of scenario doses (1)

Dose-Volume Histograms

Graphical representations plotting the percentage of a target volume receiving at least a specific dose of radiation

Evaluation of scenario doses (2)

Gamma-index map

- A quantitative tool used to compare the dose distributions

Calculation Parameters:

- Distance-to-Agreement (DTA)
- Dose Difference (DD)

M.Garbacz, doctoral dissertation, 2022

Evaluation of scenario doses (3)

Multiple dose distributions can't be reviewed individually

Solution: Voxel wise worst case dose distribution

Example results (1)

Robust analysis - DVH for a sample patient with Hodgkins lymphoma. Solid line presents reference (TPS).

FRED 3D robust analysis (TPS rec.)

FRED 4D robust analysis

Example results (2)

Robust 4D dose evaluation - gamma index 3D (3%/3mm)

- → TPS plan simple rec. with FRED **98.62%**
- → 3D robust analysis 12 scenarios (FRED) 89.08% 97.12%
- → 4D robust analysis 65 scenarios (FRED) **73.50% 91.36%**

Example results (3)

3D robust analysis 4D robust analysis 95% isodose 95% isodose Robust 4D dose evaluation -PTV PT\ 20 voxel-wise minimum dose 40 -60 -60 80 -80 100 -100 -120 -120 -250 100 150 200 250 50 100 150 200 50 90% isodose 90% isodose 20 -40 -60 -60 80 -80 100 -100 120 120 150 250 100 150 200 250 50 100 200 50 85% isodose 85% isodose 20 -40 -60 -60 80 -80 100 -100 -B 120 120

50

ò

100

150

200

250

50

100

150

200

250

Summary and conclusions

- → CCB is fully utilizing its technical potential
- → Treating moving targets requires motion mitigation methods and patient monitoring during all treatment phases
- → CCB treats lymphoma patients using the DIBH technique
- → Using DIBH reduces the dose to critical organs, especially the heart
- → The proposed tool for robust 4D dose evaluations allows analysis of worst-case scenarios, accounts for uncertainties due to respiratory motion

Thank you for your attention

Special thanks for all people from Medical Physics Department in CCB for substantive support and providing materials This work was performed within the NdS/544985/2021/2021 project, supported by the Polish Ministry of Education and Science. Head of the project:

Renata Kopeć, DSc, Eng, Associate Professor

