Nanostructured Copper-functionalized silica-based materials for NLO

applications:

SHG nanoprobes: advancing harmonic imaging in living tissue
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Fundamental limit of optics: what limits imaging depth

Scattering In tissues
0.7 — 1.2 um: reduced Rayleigh scattering compared to VIS

Absorption In tissues

0.7 — 1 2 um: reduced absorption compared to
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But strong Mie scattering at a few 100’s um depth

Type
Rayleigh Scattering

Particles the same or larger as wavelength of light

Tyndall Scattering

Colloidal particles same order as wavelength of light

Light Scattering

Result

Blue light is scattered more

Scattered light is white

Blue light is scattered more

Relevance

Why the sky is blue!

Sclera, cataracts, and
clouds appear white

Blue irides (stroma
without melanin is
clolorless; scattering
makes it appear blue)

Flare appears blue

Motivation: find a solution to all these issues that stop tissue imaging.

IR-Excitation: The longer wavelength

penetrates deeper into the tissue

s

Clearing the tissue (Bleaching the pigments)



Second Harmonic generation (SHG) Is a second-order nonlinear optical process in which two

photons at the frequency o Interacting with noncentrosymmetric media (1.e., material lacking a
generalized mirror symmetry) combine to form a new photon with twice the Energy.
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From incoherent two-photon fluorescence (2PF) to coherent NLO

Excited state
Virtual state
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Incoherent process: Coherent nonlinear processes : Two-Photon Excited Fluorescence Second Harmonic Generation
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In-depth detection In tissues

Single-molecule detection
- Biological systems are labelled

- No labelling(collagen,and other molecules that show a specific orientations)

https://www.researchgate.net/publication/45406617 Second harmonic generating SHG nanoprobes for in vivo imaging



https://www.researchgate.net/publication/45406617_Second_harmonic_generating_SHG_nanoprobes_for_in_vivo_imaging

Challenges of 2PF

Bleaching: multiple excitations of the

Fluorophore lead to weak photons
->
phototoxicity

Differential Photobleaching in Multiply-Stained Tissues

Blinking
large intensity fluctuations of
fluorescence, whereby photon emission
turns “on” and “off”
Intermittently=>»over blocks of time
during which the tagged molecule
cannot be followed

Dye saturation

Fluorescent dyes are limited in the
maximum number of photons that
they can emit in a given time

(a) (b) (c)

Fluorescent probes fall short of their potential due to dye bleaching, dye signal saturation, and tissue

autofluorescence
SHG nano-probes outperform fluorescent counterparts: no bleaching or blinking, the signal remains

strong under intense illumination, offering superior contrast for molecular imaging of live cells and
tissues



Better alternatives of Fluorophore dyes are SHG probes

 Long-term observation without photobleaching, flexibility in the choice of the excitation
wavelength, and coherent signals.

* Narrow signal bandwidth for greater noise rejection, ultrafast response time, and excellent
biocompatibility

Where we are standing
Barium titanate nanoparticles

Zinc oxide (ZnO)
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2D ordered porous silica layer

Can we use
functionalized
mesoporous silica?
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Properties of SBA-POO2Cu as a function of the concentration of functional

groups

P — Polarizer
M — Mirror
Si PD — Photodetector
PM — Photomultiplier
F — Filter
S — Sample
T — Table
OSC — Osciloscope

PC — Personal Computer
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Applications

Modulators of the laser light and

A=1064nm A=532nm
(IR region)f¥ (visible region)

the material

with NLO properties

frequency transformers
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Dependence of the SHG (a) and THG (b) on different degrees of

functionalization.
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A Fourier Transform of the EXAFS signal
provides a photoelectron scattering profile as a
function of the radial distance from the Copper

Nonlinear optical methods are sensitive to charge
density acentricity, unlike X-ray diffraction. Even

small changes below several nanometers affect charge

transport between functionalized groups. Studying
nanoparticles and ligand coordination is vital for
understanding these effects
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r33 values (pm/V)

Centrosymmeric aggregation
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When we're dealing with highly concentrated systems, like In
certain materials used for optics, molecular groups tend to get
a bit too cosy with each other
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Summary

» Second harmonic generating (SHG) nanoprobes are innovative and robust labels ideal for in vivo
Imaging, offering advantages over traditional fluorescent probes. They neither bleach nor blink,
and the signal does not saturate with increasing itllumination intensity

* Their nanocrystalline structure lacks a central point of symmetry, enabling them to produce
second harmonic signals under intense illumination. This process involves converting two photons
Into one photon with half the incident wavelength.

* These nanoprobes are detectable using conventional two-photon microscopy techniques,
facilitating high-resolution imaging in living organisms.
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