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OUTLINE

• Why machine learning?

• What is it?

• How to apply it to the experiment like MUonE?

• How does it compare to the “classical” methods?
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WHY MACHINE LEARNING?

More complicated detectors, extreme 
luminosities

More data to be processes

Stricter time constraints
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Cons Pros

WHY MACHINE LEARNING?
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ARTIFICIAL NEURAL NETWORK
ARTIFICIAL NEURONS AND LAYERS

• aka perceptron,

• Inspired by biological counterpart,

• Input weighted with trainable parameters and summed,

• Activation function determines the output,

• Organized in layers
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ARTIFICIAL NEURAL NETWORK
ACTIVATION FUNCTION

• aka transfer function,

• Defines the answer of the neuron for the given input,

• Most popular:

• Logistic function (sigmoid) <1>,

• Softmax (sigmoid in multiple dimensions),

• Hyperbolic tangent <2>,

• Softsign <3>,

• Rectified Linear Unit (ReLU) <4> and variants.
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ARTIFICIAL NEURAL NETWORK
TRAINING

• Generalize the model, so it can perform a task using data not seen before,

• Supervised training:

• Uses training dataset (labelled data, ground truth),

• Responses compared with the labels by the loss function (cost function),

• Unsupervised training:

• No labelled dataset,

• Network expected to find patterns in the data,

• Reinforcement training:

• Agents are scored for their actions,

• Can be used in situation where there is no mathematical model of the problem.

11



SUPERVISED LEARNING

• Labelled dataset:

• Expected output value assigned to each input,

• Used for training and testing,

• Loss function:

• Grades every response from the network,

• Results used to optimize the model,

• Optimization:

• Backpropagation algorithm.
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BACKPROPAGATION AND OPTIMIZATION

• Backpropagation for feedforward neural networks:

• Estimation of the gradient of the loss function with respect to the weights,

• Term often used to refer to the learning algorithm,

• Optimizer:

• Utilizes calculated gradient (e.g. stochastic gradient descent),

• Adjusts values of the weights to minimize the value of the loss function.
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CONTEXT: THE MUonE EXPERIMENT
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THE MUonE EXPERIMENT

• Looking for signs of the New Physics in determination of the leading hadronic 

contribution to the muon anomalous magnetic moment αμ ,

• Elastic scattering of muons on the atomic electrons in the target,

• Previous measurements of αμ deviate from

Standard Model by 4.2σ

• Chance to improve the significance to 7σ
by lowering the theoretical error coming from

the hadronic vacuum polarization αμ
𝐻𝑉𝑃,𝐿𝑂



MUonE DETECTOR
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• Will operate at a high energy muon beam at CERN SPS,

• Beryllium or carbon target,

• Pair of outgoing muon and electron will pass through

the set of tracking stations with silicon strip sensors,

• Measured coordinates:

• z along the beam axis,

• x or y (alternatively) in the plane perpendicular to the beam axis,

• u or v (stereo layers) – like x and y, but rotated ±45°.

• 40 stations followed by the calorimeter and muon chamber.



• Simulation based on Test Run 2018 configuration,

• ~132 000 events,

• 2D hits: z + measured value,

• Ground truth:

• Track parameters:

• Slope,

• Intercept,

• Particle type.

DATASET
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THE NETWORK

• Multi Layer Perceptron (MLP):

• PyTorch,

• Deep neural network: 4 linear layers, 1000 neurons each,

• Activation function: ReLU,

• Loss function: MSELoss (Mean Square Error Loss).

• Input: 2D hit coordinates,

• Output: slopes and intercepts of two 3D tracks.
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FIRST RESULTS

• Promising, but experiment requires high precision,

• Response from the network may be used as a part of the algorithm.
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RECONSTRUCTION ALGORITHM
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RECONSTRUCTION ALGORITHM
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RECONSTRUCTION ALGORITHM
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RECONSTRUCTION ALGORITHM

• RANSAC:

• RANdom SAmple Consensus,

• Robust linear fit algorithm not sensible to outliers.
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RECONSTRUCTION ALGORITHM
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RESULTS

• Track 1: muon, Track 2: electron

• Top: ML-based algorithm

• Bottom: “conventional” reconstruction
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Particle ML-based Conventional

Muon σ = 0.000018 mrad σ = 0.000019 mrad

Electron σ1 = 1.290 mrad,
σ2 = 0.245 mrad

σ1 = 1.230 mrad,
σ2 = 0.244 mrad

Resolution:



RESULTS

• Track reconstruction efficiency:

• Track slope difference vs MC under 1 × 10−2
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Particle DNN-based Classical

Muon 100% 99.98%

Electron 99.66% 99.38%

Efficiency:



CONCLUSIONS

• Machine learning potential for HEP:

• Good at finding patterns in big datasets,

• Fast response (no iterations),

• Highly parallel,

• Practical application:

• ML-based track reconstruction for dataset representing MUonE Test Run,

• Results on par with the classical method,

• Potential to use also for different tasks in the experiment.

26



CURRENT/FUTURE WORKS

• Graph neural networks (GNN):

• Growing popularity in HEP,

• Events represented as graphs:

• Nodes – hits,

• Edges – track segments, connections,

• Flexible at handling missing or additional hits (noise, background),

• Can perform different tasks:

• Track reconstruction,

• Particle identification, track identification,

• Software alignment.
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ML FOR MUonE @ IFJ

• GPU-workstation dedicated to the machine learning for MUonE founded

by NCN grant OPUS 2022/45/B/ST2/00318,

• Coordination of the machine learning working group in the experiment.

28



Q&A
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