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Ultra-relativistic heavy-ion collisions
and quark-gluon plasma

• Collisions of nuclei of Pb, Au, … 

• Longitudinal expansion dominates initially

• Almond-shaped collision region leads to a pressure asymmetry

• Measured hadron spectra reveal memory of the initial state 

• QGP behaves as a fluid rather than a gas

• Evolution of QGP is successfully modelled by Fluid Dynamics



QGP and Fluid Dynamics
the early-time puzzle

• Fluid Dynamics is an effective near-equilibrium description,  
anchored in the appropriate microscopic theory.

• The reduction of complexity at sufficiently late times is the 
hallmark of the approach to equilibrium. 

• The success of hydrodynamic models in QGP dynamics suggests a 
rapid reduction of complexity also at early times.



QGP and pre-hydrodynamic attractors

• Pre-hydrodynamic attractors originate from the specific kinematic 
conditions of heavy-ion collisions (initial dominance of the 
longitudinal expansion)

• They have been identified in diverse dynamical settings:

• Hydrodynamic models 
• Kinetic theory (weakly-coupled quasiparticles)
• Strongly-coupled supersymmetric Yang-Mills theory (AdS/CFT)

• They provide a simple, semi-analytic picture of how information 
contained in the initial state is relayed to the freeze-out stage

• The partial loss of memory of initial conditions can be understood 
in terms of non-hydrodynamic modes



Perturbations of equilibrium
at the linearised level

• Systems perturbed out of equilibrium typically return to it:

• Hydrodynamic (long-lived, long-wavelength) modes such as 

• Non-hydrodynamic (transient) modes such as 

• A causal theory with viscosity must include some number of such 
transient (non-hydrodynamic) excitations
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• The conservation equation requires a single integration constant 

• Remaining initial data is contained in          

• In many models           follows a universal attractor

Attractors in Bjorken flow
in conformal models

(Tμ
ν ) = diag(−ℰ, 𝒫L, 𝒫T, 𝒫T)

ℰ(τ) ∼ T(τ)4, w ≡ τT

Busza et al. 1802.04801
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Conservation of the energy-momentum tensor:
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Expressed in terms of 2 functions of proper time:
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t = τ sinh y
z = τ cosh y



The attractor in Bjorken flow 
in conformal Mueller-Israel-Stewart theory
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Navier-Stokes
An attractor connects

the early, far-from-equilibrium
domain to the hydrodynamic 

region at late times

The pressure anisotropy satisfies 
this first order ODE, where

Cη ≡ η/s, Cτ ≡ τRT

Solutions starting off the attractor
reach its vicinity even if the pressure 

anisotropy is large so the system 
is still far from equilibrium. 

There is a rapid reduction of 
complexity initially, followed by

a period of more moderate 
loss of memory 



The attractor – the late time asymptotic view
in conformal MIS

Navier-Stokes

At asymptotically late times
there is no memory 

of the initial conditions
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The expansion coefficients do not 
depend on initial conditions



The attractor – the transseries view
in conformal MIS
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Different initial conditions are captured 
by exponentially-suppressed corrections 
to the asymptotic gradient series through 

the transseries parameter. 

The scale of the exponential damping 
is set by the relaxation time, which is 

the non-hydrodynamic mode frequency.

Navier-Stokes



• Expansion-dominated early-time stage

• Pre-hydrodynamic stage (non-hydrodynamic mode decay)

• Asymptotic (hydrodynamic) stage

The attractor – three stages

Navier-Stokes

The pre-hydrodynamic stage 
depends on both the model parameters

 and the initial state: 
this is where freeze-out takes place

The expansion-dominated stage
depends weakly on model parameters

which points to its kinematic origin

The asymptotic stage
is independent of initial conditions



Transverse dynamics as perturbations
a semi-analytic extension of the Bjorken model  

• Most of the interesting physics involves transverse dynamics

• Dependence on transverse coordinates can be incorporated by 
linearising around the Bjorken attractor:

• Fourier modes

• Linearised MIS equations: a set of 6 coupled ODEs for each k

• Initial states provide initial conditions for the modes

T(τ, x) = T(τ) + δT(τ, x) = T(τ)(1 + δ ̂T(τ, x))

̂ϕ(τ, x) = ∫
d2k

(2π)2
eik⋅x ̂ϕ(τ, k)

An, MS 2312.07703



Transverse dynamics as perturbations
stability of perturbations around the attractor
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Transverse dynamics as perturbations
late time asymptotics
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Different initial conditions 
are reflected by the amplitudes
which determine the physics 

at freeze-out time
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Transverse dynamics as perturbations
late time asymptotics
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Large wave vector modes are 
damped more strongly 

than small wavelength modes



Transverse dynamics as perturbations
freeze-out and flow

• Flow is usually quantified in terms of coefficients in the expansion 

• These coefficients are can be expressed in terms of transverse 
averages of the perturbations:  

• Elliptic flow originates entirely from the exponentially-suppressed 
corrections which are still not negligible at freeze-out
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Summary

• The physics of QGP has lead to foundational issues in the field of 
relativistic fluid dynamics

• The special kinematics characteristic of heavy-ion collisions leads  
to pre-hydrodynamic attractors

• Almost all physical observables in heavy ion physics can be 
interpreted as transseries corrections to the Bjorken attractor


