Attractors in Quark-Gluon Plasma Dynamics

Michał Spaliński UwB & NCBJ

2PiNTS@IFJ Kraków, 11/09/2024

## Ultra-relativistic heavy-ion collisions and quark-gluon plasma



- Collisions of nuclei of Pb, Au, ...
- Longitudinal expansion dominates initially
- Almond-shaped collision region leads to a pressure asymmetry
- Measured hadron spectra reveal memory of the initial state
- QGP behaves as a fluid rather than a gas
- Evolution of QGP is successfully modelled by Fluid Dynamics

## QGP and Fluid Dynamics the early-time puzzle

- Fluid Dynamics is an effective near-equilibrium description, anchored in the appropriate microscopic theory.
- The reduction of complexity at sufficiently late times is the hallmark of the approach to equilibrium.
- The success of hydrodynamic models in QGP dynamics suggests a rapid reduction of complexity also at early times.

## QGP and pre-hydrodynamic attractors

- Pre-hydrodynamic attractors originate from the specific kinematic conditions of heavy-ion collisions (initial dominance of the longitudinal expansion)
- They have been identified in diverse dynamical settings:
  - Hydrodynamic models
  - Kinetic theory (weakly-coupled quasiparticles)
  - Strongly-coupled supersymmetric Yang-Mills theory (AdS/CFT)
- They provide a simple, semi-analytic picture of how information contained in the initial state is relayed to the freeze-out stage
- The partial loss of memory of initial conditions can be understood in terms of non-hydrodynamic modes

## Perturbations of equilibrium at the linearised level

• Systems perturbed out of equilibrium typically return to it:

$$\mathscr{L}\delta\Phi = 0 \quad \Longrightarrow \quad \delta\Phi \sim e^{-i\omega t + ikz}$$

• Hydrodynamic (long-lived, long-wavelength) modes such as

$$\omega = c_s k - \frac{i\Gamma_s}{2}k^2 + \dots$$

• Non-hydrodynamic (transient) modes such as

$$\omega = -\frac{i}{\tau_R} + \dots$$

 A causal theory with viscosity must include some number of such transient (non-hydrodynamic) excitations

## Attractors in Bjorken flow in conformal models



- The conservation equation requires a single integration constant
- Remaining initial data is contained in  $\mathscr{A}(w)$
- In many models  $\mathscr{A}(w)$  follows a universal attractor

#### The attractor in Bjorken flow in conformal Mueller-Israel-Stewart theory

$$C_{\tau}\left(1+\frac{\mathscr{A}}{12}\right)\mathscr{A}'+\frac{C_{\tau}}{3w}\mathscr{A}^{2}=\frac{3}{2}\left(\frac{8C_{\eta}}{w}-\mathscr{A}\right)$$



The pressure anisotropy satisfies this first order ODE, where  $C_{\eta} \equiv \eta/s, \quad C_{\tau} \equiv \tau_R T$ 

An attractor connects the early, far-from-equilibrium domain to the hydrodynamic region at late times

There is a rapid reduction of complexity initially, followed by a period of more moderate loss of memory

Solutions starting off the attractor reach its vicinity even if the pressure anisotropy is large so the system is still far from equilibrium.

# The attractor – the late time asymptotic view in conformal MIS



The expansion coefficients do not depend on initial conditions

At asymptotically late times there is no memory of the initial conditions

## The attractor – the transseries view in conformal MIS



## The attractor – three stages

- Expansion-dominated early-time stage
- Pre-hydrodynamic stage (non-hydrodynamic mode decay)
- Asymptotic (hydrodynamic) stage



The expansion-dominated stage depends weakly on model parameters which points to its kinematic origin

The pre-hydrodynamic stage depends on both the model parameters and the initial state: this is where freeze-out takes place

The asymptotic stage is independent of initial conditions

## **Transverse dynamics as perturbations** a semi-analytic extension of the Bjorken model

- Most of the interesting physics involves transverse dynamics
- Dependence on transverse coordinates can be incorporated by linearising around the Bjorken attractor:

$$T(\tau, \mathbf{x}) = T(\tau) + \delta T(\tau, \mathbf{x}) = T(\tau) \left( 1 + \delta \hat{T}(\tau, \mathbf{x}) \right)$$

• Fourier modes

$$\hat{\phi}(\tau, \mathbf{x}) = \int \frac{d^2k}{(2\pi)^2} e^{i\mathbf{k}\cdot\mathbf{x}}\hat{\phi}(\tau, \mathbf{k})$$

- Linearised MIS equations: a set of 6 coupled ODEs for each k
- Initial states provide initial conditions for the modes

### Transverse dynamics as perturbations stability of perturbations around the attractor



Perturbations initialised on the attractor

Perturbations initialised off the attractor

## Transverse dynamics as perturbations late time asymptotics



$$\delta \hat{T} = \sum_{i=1}^{4} \sigma_i (\Lambda \tau)^{\beta_i} e^{-i\omega_i \tau - A_i (\Lambda \tau)^{2/3}} (1 + \dots)$$

Different initial conditions are reflected by the amplitudes which determine the physics at freeze-out time

$$A_{1} = A_{2} = \frac{\alpha^{2}}{C_{\tau}c_{\infty}^{2}}, \quad A_{3} = \frac{3}{2C_{\tau}}, \quad A_{4} = \frac{1}{2C_{\tau}c_{\infty}^{2}}, \quad A_{5} = A_{6} = \frac{3}{4C_{\tau}},$$
$$\omega_{1} = -\omega_{2} = c_{\infty}k \left[ 1 + \frac{2\alpha^{2}}{3c_{\infty}^{2}} \left( 2C_{\tau}(1 - \alpha^{2}) - \frac{(1 + \alpha^{2})\Lambda^{2}}{C_{\tau}^{2}c_{\infty}^{4}k^{2}} \right) (\Lambda\tau)^{-2/3} \right], \quad \omega_{3} = \omega_{4} = 0$$

$$c_{\infty} \equiv \sqrt{\frac{1}{3} \left(1 + 4\frac{C_{\eta}}{C_{\tau}}\right)}, \qquad \alpha \equiv \sqrt{\frac{C_{\eta}}{C_{\tau}}}$$

## Transverse dynamics as perturbations late time asymptotics



$$\delta \hat{T} = \sum_{i=1}^{4} \sigma_i (\Lambda \tau)^{\beta_i} e^{-i\omega_i \tau - A_i (\Lambda \tau)^{2/3}} (1 + \dots)$$

Large wave vector modes are damped more strongly than small wavelength modes

$$\begin{split} \beta_1 &= \beta_2 = \frac{1}{54c_{\infty}^4} \left( 1 + 8\alpha^2 + 64\alpha^4 + 32\alpha^6 + \frac{4\alpha^2 \Lambda^2}{C_{\tau}^3 c_{\infty}^4 k^2} \right), \\ \beta_3 &= -\frac{2}{3}(1 - \alpha^2), \\ \beta_4 &= \frac{2\alpha^2}{27c_{\infty}^4} \left( 1 - 16\alpha^2 - \frac{2\Lambda^2}{C_{\tau}^3 c_{\infty}^4 k^2} \right) \end{split}$$

# Transverse dynamics as perturbations freeze-out and flow

• Flow is usually quantified in terms of coefficients in the expansion

$$\frac{dN(p_{\perp},\phi)}{p_{\perp}dp_{\perp}d\phi dy} = v_0(p_{\perp}) \left(1 + \sum_{n=1}^{\infty} 2v_n(p_{\perp})\cos(n\phi)\right)$$

• These coefficients are can be expressed in terms of transverse averages of the perturbations:

$$\begin{split} v_{0}(\hat{p}_{\perp}) &= \frac{m_{\perp}\tau_{f}}{(2\pi)^{3}} \Sigma_{\perp} \left[ F_{0} + F_{1} \langle \delta \hat{T} \rangle_{\perp} + F_{11} \langle \delta \hat{T} \delta \hat{T} \rangle_{\perp} + \frac{1}{2} \hat{p}_{\perp}^{2} \left( F_{3} \langle \delta \hat{\pi}_{ii} \rangle_{\perp} + F_{13} \langle \delta \hat{\pi}_{ii} \delta \hat{T} \rangle_{\perp} + F_{22} \langle \delta u_{i} \delta u_{i} \rangle_{\perp} \right) \right], \\ v_{2}(\hat{p}_{\perp}) &= \frac{\hat{p}_{\perp}^{2} \left( F_{3} \langle \delta \hat{\pi}_{11} - \delta \hat{\pi}_{22} \rangle_{\perp} + F_{13} \langle (\delta \hat{\pi}_{11} - \delta \hat{\pi}_{22}) \delta \hat{T} \rangle_{\perp} + F_{22} \langle \delta u_{1}^{2} - \delta u_{2}^{2} \rangle_{\perp} \right)}{4(F_{0} + F_{1} \langle \delta \hat{T} \rangle_{\perp} + F_{11} \langle \delta \hat{T} \delta \hat{T} \rangle_{\perp}) + 2\hat{p}_{\perp}^{2} \left( F_{3} \langle \delta \hat{\pi}_{ii} \rangle_{\perp} + F_{13} \langle \delta \hat{\pi}_{ii} \delta \hat{T} \rangle_{\perp} + F_{22} \langle \delta u_{i} \delta u_{i} \rangle_{\perp} \right)}, \end{split}$$

• Elliptic flow originates entirely from the exponentially-suppressed corrections which are still not negligible at freeze-out

## Summary

- The physics of QGP has lead to foundational issues in the field of relativistic fluid dynamics
- The special kinematics characteristic of heavy-ion collisions leads to pre-hydrodynamic attractors
- Almost all physical observables in heavy ion physics can be interpreted as transseries corrections to the Bjorken attractor