Strongly coupled dynamics with a phase transition – some surprises

Romuald A. Janik

Jagiellonian University Kraków

RJ, M. Järvinen, H. Soltanpanahi, J. Sonnenschein, PRL '22 [2205.06274] RJ, M. Järvinen, J. Sonnenschein, to appear...

[Long term motivation](#page-5-0)

[Domain wall velocities](#page-16-0)

[Conventional picture and a key question](#page-30-0) [Results of holographic simulations](#page-34-0) [A simple formula for domain wall velocity](#page-51-0)

[Boost-invariant expansion and hot remnants](#page-67-0) [Boost-invariant expansion and cooling](#page-68-0) [Reheating of plasma remnants](#page-78-0) [Entropy considerations](#page-88-0)

[Long term motivation](#page-5-0)

[Domain wall velocities](#page-16-0)

[Conventional picture and a key question](#page-30-0) [Results of holographic simulations](#page-34-0) [A simple formula for domain wall velocity](#page-51-0)

[Boost-invariant expansion and hot remnants](#page-67-0) [Boost-invariant expansion and cooling](#page-68-0) [Reheating of plasma remnants](#page-78-0) [Entropy considerations](#page-88-0)

[Long term motivation](#page-5-0)

[Domain wall velocities](#page-16-0)

[Conventional picture and a key question](#page-30-0) [Results of holographic simulations](#page-34-0) [A simple formula for domain wall velocity](#page-51-0)

[Boost-invariant expansion and hot remnants](#page-67-0)

[Boost-invariant expansion and cooling](#page-68-0) [Reheating of plasma remnants](#page-78-0) [Entropy considerations](#page-88-0)

[Long term motivation](#page-5-0)

[Domain wall velocities](#page-16-0)

[Conventional picture and a key question](#page-30-0) [Results of holographic simulations](#page-34-0) [A simple formula for domain wall velocity](#page-51-0)

[Boost-invariant expansion and hot remnants](#page-67-0)

[Boost-invariant expansion and cooling](#page-68-0) [Reheating of plasma remnants](#page-78-0) [Entropy considerations](#page-88-0)

Question: How to understand phase transitions in real time within holography?

- \triangleright Phase transitions in equilibrium in holography correspond to switching between **two spacetime geometries**
- It is nontrivial what happens in real time...
- \triangleright In some cases there is a classical gravity description, in others probably not...

Theoretically interesting even for its own sake!

But also interesting real-world applications:

- \blacktriangleright 1st order phase transition reappears at nonzero density...
- \triangleright Some physics in early universe??

Question: How to understand phase transitions in real time within holography?

- \triangleright Phase transitions in equilibrium in holography correspond to switching between **two spacetime geometries**
- It is nontrivial what happens in real time...
- \triangleright In some cases there is a classical gravity description, in others probably not...

Theoretically interesting even for its own sake!

But also interesting real-world applications:

- \blacktriangleright 1st order phase transition reappears at nonzero density...
- \triangleright Some physics in early universe??

Question: How to understand phase transitions in real time within holography?

- \triangleright Phase transitions in equilibrium in holography correspond to switching between **two spacetime geometries**
- It is nontrivial what happens in real time...
- \blacktriangleright In some cases there is a classical gravity description, in others probably not...

Theoretically interesting even for its own sake!

But also interesting real-world applications:

- \blacktriangleright 1st order phase transition reappears at nonzero density...
- \triangleright Some physics in early universe??

Question: How to understand phase transitions in real time within holography?

- \triangleright Phase transitions in equilibrium in holography correspond to switching between **two spacetime geometries**
- It is nontrivial what happens in real time...
- \triangleright In some cases there is a classical gravity description, in others probably not...

Theoretically interesting even for its own sake!

But also interesting real-world applications:

- \blacktriangleright 1st order phase transition reappears at nonzero density...
- \triangleright Some physics in early universe??

Question: How to understand phase transitions in real time within holography?

- \triangleright Phase transitions in equilibrium in holography correspond to switching between **two spacetime geometries**
- It is nontrivial what happens in real time...
- In some cases there is a classical gravity description, in others probably not...

Theoretically interesting even for its own sake!

But also interesting real-world applications:

- \blacktriangleright 1st order phase transition reappears at nonzero density...
- \triangleright Some physics in early universe??

Question: How to understand phase transitions in real time within holography?

- \triangleright Phase transitions in equilibrium in holography correspond to switching between **two spacetime geometries**
- It is nontrivial what happens in real time...
- In some cases there is a classical gravity description, in others probably not...

Theoretically interesting even for its own sake!

But also interesting real-world applications:

- \blacktriangleright 1st order phase transition reappears at nonzero density...
- \triangleright Some physics in early universe??

Question: How to understand phase transitions in real time within holography?

- \triangleright Phase transitions in equilibrium in holography correspond to switching between **two spacetime geometries**
- It is nontrivial what happens in real time...
- In some cases there is a classical gravity description, in others probably not...

Theoretically interesting even for its own sake!

But also interesting real-world applications:

- \blacktriangleright 1st order phase transition reappears at nonzero density...
- \triangleright Some physics in early universe??

Question: How to understand phase transitions in real time within holography?

- \triangleright Phase transitions in equilibrium in holography correspond to switching between **two spacetime geometries**
- It is nontrivial what happens in real time...
- In some cases there is a classical gravity description, in others probably not...

Theoretically interesting even for its own sake!

But also interesting real-world applications:

- \blacktriangleright 1st order phase transition reappears at nonzero density...
- \triangleright Some physics in early universe??

Question: How to understand phase transitions in real time within holography?

- \triangleright Phase transitions in equilibrium in holography correspond to switching between **two spacetime geometries**
- It is nontrivial what happens in real time...
- In some cases there is a classical gravity description, in others probably not...

Theoretically interesting even for its own sake!

But also interesting real-world applications:

 \triangleright What does holography tell us about hadronization??

caution for $N_c = 3$: crossover!

- \blacktriangleright 1st order phase transition reappears at nonzero density...
- \triangleright Some physics in early universe??

Question: How to understand phase transitions in real time within holography?

- \triangleright Phase transitions in equilibrium in holography correspond to switching between **two spacetime geometries**
- It is nontrivial what happens in real time...
- In some cases there is a classical gravity description, in others probably not...

Theoretically interesting even for its own sake!

But also interesting real-world applications:

 \triangleright What does holography tell us about hadronization??

caution for $N_c = 3$: crossover!

 \blacktriangleright 1st order phase transition reappears at nonzero density...

 \triangleright Some physics in early universe??

Question: How to understand phase transitions in real time within holography?

- \triangleright Phase transitions in equilibrium in holography correspond to switching between **two spacetime geometries**
- It is nontrivial what happens in real time...
- In some cases there is a classical gravity description, in others probably not...

Theoretically interesting even for its own sake!

But also interesting real-world applications:

```
caution for N_c = 3: crossover!
```
- \blacktriangleright 1st order phase transition reappears at nonzero density...
- \triangleright Some physics in early universe??

1. Bubble wall velocities

- At a 1^{st} order phase transition $T = T_c$, we can have domains of coexisting phases separated by domain walls
- \triangleright The pressures on both sides are balanced and the domain wall can be static...

- \triangleright This can occur for nucleated bubbles of a stable phase within an supercooled medium
- \triangleright At an interface between phases away from $T = T_c$
- \triangleright Or an interface between phases at different temperatures

 \blacktriangleright At a 1^st order phase transition $T=T_c$, we can have domains of coexisting phases separated by domain walls

 \triangleright The pressures on both sides are balanced and the domain wall can be static...

- \triangleright This can occur for nucleated bubbles of a stable phase within an supercooled medium
- \triangleright At an interface between phases away from $T = T_c$
- \triangleright Or an interface between phases at different temperatures

- \blacktriangleright At a 1^st order phase transition $T=T_c$, we can have domains of coexisting phases separated by domain walls
- \triangleright The pressures on both sides are balanced and the domain wall can be static...

- \triangleright This can occur for nucleated bubbles of a stable phase within an supercooled medium
- \triangleright At an interface between phases away from $T = T_c$
- \triangleright Or an interface between phases at different temperatures

- \blacktriangleright At a 1^st order phase transition $T=T_c$, we can have domains of coexisting phases separated by domain walls
- \triangleright The pressures on both sides are balanced and the domain wall can be static...

- \triangleright This can occur for nucleated bubbles of a stable phase within an supercooled medium
- \triangleright At an interface between phases away from $T = T_c$
- \triangleright Or an interface between phases at different temperatures

- \blacktriangleright At a 1^st order phase transition $T=T_c$, we can have domains of coexisting phases separated by domain walls
- \triangleright The pressures on both sides are balanced and the domain wall can be static...

- \triangleright This can occur for nucleated bubbles of a stable phase within an supercooled medium
- \triangleright At an interface between phases away from $T = T_c$
- \triangleright Or an interface between phases at different temperatures

- \blacktriangleright At a 1^st order phase transition $T=T_c$, we can have domains of coexisting phases separated by domain walls
- \triangleright The pressures on both sides are balanced and the domain wall can be static...

- \triangleright This can occur for nucleated bubbles of a stable phase within an supercooled medium
- At an interface between phases away from $T = T_c$
- \triangleright Or an interface between phases at different temperatures

- \blacktriangleright At a 1^st order phase transition $T=T_c$, we can have domains of coexisting phases separated by domain walls
- \triangleright The pressures on both sides are balanced and the domain wall can be static...

Question: What happens when we move away from $T = T_c$?

- \triangleright This can occur for nucleated bubbles of a stable phase within an supercooled medium
- At an interface between phases away from $T = T_c$
- \triangleright Or an interface between phases at different temperatures

Domain walls start to move...

Goal:

Understand bubble wall velocities at strong coupling...

 \triangleright ...but this does not happen — the domain wall ultimately moves with a constant velocity...

► **Common lore:** friction in the second phase balances the net force — challenging to calculate...

 \triangleright ...but this does not happen — the domain wall ultimately moves with a constant velocity...

► **Common lore:** friction in the second phase balances the net force — challenging to calculate...

 $P_1 > P_2$ P_2

 \triangleright ...but this does not happen — the domain wall ultimately moves with a constant velocity...

► **Common lore:** friction in the second phase balances the net force — challenging to calculate...

 $P_1 > P_2$ P_2

 \triangleright ...but this does not happen — the domain wall ultimately moves with a constant velocity...

► **Common lore:** friction in the second phase balances the net force — challenging to calculate...

 $P_1 > P_2$ P_2

 \triangleright ...but this does not happen — the domain wall ultimately moves with a constant velocity...

▶ Common lore: friction in the second phase balances the net force — challenging to calculate...

$$
P_{\lambda} > P_{\lambda} \qquad \qquad \overbrace{\left\langle \begin{array}{c} \overbrace{}^{R \cap C \in \mathcal{C}} \overbrace{}^{N} \\ \overbrace{}^{R \cap C \in \mathcal{C}} \end{array} \right\rangle}^{E \cap R \cap C \in \mathcal{C}} P_{\lambda}
$$

- \triangleright The net force across the domain wall implies that the pressure difference is localized close to the domain wall...
- It is not obvious *a-priori* if this is always the case...

 \triangleright The net force across the domain wall implies that the pressure difference is localized close to the domain wall...

It is not obvious *a-priori* if this is always the case...

- \triangleright The net force across the domain wall implies that the pressure difference is localized close to the domain wall...
- It is not obvious *a-priori* if this is always the case...

- \triangleright The net force across the domain wall implies that the pressure difference is localized close to the domain wall...
- It is not obvious *a-priori* if this is always the case...

Holographic setups

- **1.** Witten model in 3D confinement/deconfinement transition
- **2.** Holographic gravity+scalar model with a transition between two deconfined phases

Holographic setups

- **1.** Witten model in 3D confinement/deconfinement transition
- **2.** Holographic gravity+scalar model with a transition between two deconfined phases
Holographic setups

- **1.** Witten model in 3D confinement/deconfinement transition **use simplified hydrodynamics+scalar field fitted to holography**
- **2.** Holographic gravity+scalar model with a transition between two deconfined phases

Holographic setups

- **1.** Witten model in 3D confinement/deconfinement transition **use simplified hydrodynamics+scalar field fitted to holography**
- **2.** Holographic gravity+scalar model with a transition between two deconfined phases

Holographic setups

- **1.** Witten model in 3D confinement/deconfinement transition **use simplified hydrodynamics+scalar field fitted to holography**
- **2.** Holographic gravity+scalar model with a transition between two deconfined phases

full holographic simulation

- \blacktriangleright We increase the temperature of the high energy phase...
- \triangleright We perform time evolution from the above static initial conditions...
- ▶ The pressure in each phase may be read off from the T ^{yy} component of the energy-momentum tensor

- \triangleright We increase the temperature of the high energy phase...
- \triangleright We perform time evolution from the above static initial conditions...
- ▶ The pressure in each phase may be read off from the T ^{yy} component of the energy-momentum tensor

- \triangleright We increase the temperature of the high energy phase...
- \triangleright We perform time evolution from the above static initial conditions...
- ▶ The pressure in each phase may be read off from the T ^{yy} component of the energy-momentum tensor

- \triangleright We increase the temperature of the high energy phase...
- \triangleright We perform time evolution from the above static initial conditions...
- \blacktriangleright The pressure in each phase may be read off from the T^{yy} component of the energy-momentum tensor

- I The large pressure difference appears **away** from the domain wall
- \triangleright The change in pressures occurs in the high energy density phase −→ **hydrodynamic description**
- \triangleright The pressure is essentially constant across the domain wall, and very close to $p(T_c)$...

- I The large pressure difference appears **away** from the domain wall
- \triangleright The change in pressures occurs in the high energy density phase −→ **hydrodynamic description**
- \triangleright The pressure is essentially constant across the domain wall, and very close to $p(T_c)$...

- I The large pressure difference appears **away** from the domain wall
- \triangleright The change in pressures occurs in the high energy density phase −→ **hydrodynamic description**
- \triangleright The pressure is essentially constant across the domain wall, and very close to $p(T_c)$...

- I The large pressure difference appears **away** from the domain wall
- \triangleright The change in pressures occurs in the high energy density phase −→ **hydrodynamic description**
- \triangleright The pressure is essentially constant across the domain wall, and very close to $p(T_c)$...

- ▶ The large pressure difference appears **away** from the domain wall
- \triangleright The change in pressures occurs in the high energy density phase −→ **hydrodynamic description**
- \triangleright The pressure is essentially constant across the domain wall, and very close to $p(T_c)$...

- ▶ The large pressure difference appears **away** from the domain wall
- \blacktriangleright The change in pressures occurs in the high energy density phase
	- −→ **hydrodynamic description**
- \triangleright The pressure is essentially constant across the domain wall, and very close to $p(T_c)$...

- ▶ The large pressure difference appears **away** from the domain wall
- \blacktriangleright The change in pressures occurs in the high energy density phase −→ **hydrodynamic description**
- \triangleright The pressure is essentially constant across the domain wall, and very close to $p(T_c)$...

- ▶ The large pressure difference appears **away** from the domain wall
- \blacktriangleright The change in pressures occurs in the high energy density phase −→ **hydrodynamic description**
- \triangleright The pressure is essentially constant across the domain wall, and very close to $p(T_c)$...

We can extract the hydrodynamic velocity from *T xt*

- \triangleright The hydrodynamic velocity is quite close to the domain wall velocity *vdw*
- \triangleright This gets better with increasing ratio of entropies in the two
- ▶ We can fomulate finding *v_{dw}* as a hydrodynamic problem:

$$
v_{dw} = \tanh \int_{p_c}^{p_A} \frac{1}{(\varepsilon + p)c_s} dp
$$

We can extract the hydrodynamic velocity from *T xt*

- \triangleright The hydrodynamic velocity is quite close to the domain wall velocity *vdw*
- \triangleright This gets better with increasing ratio of entropies in the two
- ▶ We can fomulate finding *v_{dw}* as a hydrodynamic problem:

$$
v_{dw} = \tanh \int_{p_c}^{p_A} \frac{1}{(\varepsilon + p)c_s} dp
$$

- \blacktriangleright The hydrodynamic velocity is quite close to the domain wall velocity *vdw*
- \triangleright This gets better with increasing ratio of entropies in the two
- ▶ We can fomulate finding *v_{dw}* as a hydrodynamic problem:

$$
v_{dw} = \tanh \int_{p_c}^{p_A} \frac{1}{(\varepsilon + p)c_s} dp
$$

- \triangleright The hydrodynamic velocity is quite close to the domain wall velocity *vdw*
- \triangleright This gets better with increasing ratio of entropies in the two phases...
- ▶ We can fomulate finding *v_{dw}* as a hydrodynamic problem:

$$
v_{dw} = \tanh \int_{\rho_c}^{\rho_A} \frac{1}{(\varepsilon + \rho)c_s} d\rho
$$

- \triangleright The hydrodynamic velocity is quite close to the domain wall velocity *vdw*
- \triangleright This gets better with increasing ratio of entropies in the two phases...
- ▶ We can fomulate finding v_{dw} as a hydrodynamic problem:

$$
v_{dw} = \tanh \int_{p_c}^{p_A} \frac{1}{(\varepsilon + p)c_s} dp
$$

- \triangleright The hydrodynamic velocity is quite close to the domain wall velocity *vdw*
- \triangleright This gets better with increasing ratio of entropies in the two phases...
- ▶ We can fomulate finding v_{dw} as a hydrodynamic problem:

$$
v_{dw} = \tanh \int_{\rho_c}^{\rho_A} \frac{1}{(\varepsilon + \rho)c_s} d\rho
$$

- \triangleright The hydrodynamic velocity is quite close to the domain wall velocity *vdw*
- \triangleright This gets better with increasing ratio of entropies in the two phases...
- ▶ We can fomulate finding v_{dw} as a hydrodynamic problem:

This leads to the formula:

$$
v_{dw} = \tanh \int_{\rho_c}^{\rho_A} \frac{1}{(\varepsilon + \rho)c_s} d\rho
$$

requires only EOS!

Compare with holographic simulations:

for a nucleated bubble at rest one can correct for deviation of *vdw* from *vhydro*

Compare with holographic simulations:

for a nucleated bubble at rest one can correct for deviation of *vdw* from *vhydro*

Compare with holographic simulations:

for a nucleated bubble at rest one can correct for deviation of *vdw* from *vhydro*

Compare with holographic simulations:

for a nucleated bubble at rest one can correct for deviation of *vdw* from *vhydro*

results for our simulations (left) and of Bea, Mateos et.al. 2104.05708 (right)

Domain wall velocities

- **1.** Movement of a domain wall is accompanied by a hydrodynamic wave
- **2.** The pressure difference is realized on the hydro wave and **not** on the
- **3.** No need to invoke friction domain wall velocity expressed in terms of EOS (perfect fluid hydro)
- **4.** At the domain wall the pressure is approximately $p(T_c)$

Domain wall velocities

- **1.** Movement of a domain wall is accompanied by a hydrodynamic wave
- **2.** The pressure difference is realized on the hydro wave and **not** on the
- **3.** No need to invoke friction domain wall velocity expressed in terms of EOS (perfect fluid hydro)
- **4.** At the domain wall the pressure is approximately $p(T_c)$

- **1.** Movement of a domain wall is accompanied by a hydrodynamic wave
- **2.** The pressure difference is realized on the hydro wave and **not** on the domain wall
- **3.** No need to invoke friction domain wall velocity expressed in terms of EOS (perfect fluid hydro)
- **4.** At the domain wall the pressure is approximately $p(T_c)$

- **1.** Movement of a domain wall is accompanied by a hydrodynamic wave
- **2.** The pressure difference is realized on the hydro wave and **not** on the domain wall
- **3.** No need to invoke friction domain wall velocity expressed in terms of EOS (perfect fluid hydro)
- **4.** At the domain wall the pressure is approximately $p(T_c)$

- **1.** Movement of a domain wall is accompanied by a hydrodynamic wave
- **2.** The pressure difference is realized on the hydro wave and **not** on the domain wall
- **3.** No need to invoke friction domain wall velocity expressed in terms of EOS (perfect fluid hydro)
- **4.** At the domain wall the pressure is approximately $p(T_c)$

2. Boost-invariant expansion and hot remnants

- \blacktriangleright The plasma undergoes boost-invariant expansion in the longitudinal direction
- \blacktriangleright The expansion induces generically cooling and thus naturally pushes the system across the phase transition
- \blacktriangleright A scale invariant plasma cools as $\mathcal{T}(\tau) \sim 1/\tau^{\frac{1}{3}}$
- \triangleright Entropy per unity rapidity is preserved

$\mathcal{S} \propto \tau V_{\perp} \, T^3 \sim \mathit{const}$

- \blacktriangleright The plasma undergoes boost-invariant expansion in the longitudinal direction
- \blacktriangleright The expansion induces generically cooling and thus naturally pushes the system across the phase transition

 \blacktriangleright A scale invariant plasma cools as $\mathcal{T}(\tau) \sim 1/\tau^{\frac{1}{3}}$

 \triangleright Entropy per unity rapidity is preserved

 $\mathcal{S} \propto \tau V_{\perp} \, T^3 \sim \mathit{const}$

- \blacktriangleright The plasma undergoes boost-invariant expansion in the longitudinal direction
- \blacktriangleright The expansion induces generically cooling and thus naturally pushes the system across the phase transition

► A scale invariant plasma cools as $\mathcal{T}(\tau) \sim 1/\tau^{\frac{1}{3}}$

 \triangleright Entropy per unity rapidity is preserved

 $\mathcal{S} \propto \tau V_{\perp} \, T^3 \sim \mathit{const}$

- \blacktriangleright The plasma undergoes boost-invariant expansion in the longitudinal direction
- \blacktriangleright The expansion induces generically cooling and thus naturally pushes the system across the phase transition
- ► A scale invariant plasma cools as $\mathcal{T}(\tau) \sim 1/\tau^{\frac{1}{3}}$
- \blacktriangleright Entropy per unity rapidity is preserved

$S \propto \tau V_{\perp} T^3 \sim {\it const}$
Boost-invariance and 1 *st* **order phase transition**

- \blacktriangleright The plasma undergoes boost-invariant expansion in the longitudinal direction
- \blacktriangleright The expansion induces generically cooling and thus naturally pushes the system across the phase transition
- ► A scale invariant plasma cools as $\mathcal{T}(\tau) \sim 1/\tau^{\frac{1}{3}}$
- \blacktriangleright Entropy per unity rapidity is preserved

 $S \propto \tau V_{\perp} T^3 \sim {\it const}$

 \triangleright We would expect the expanding plasma to be more and more supercooled and transitioning to the other phase through nucleating more and more bubbles...

- \blacktriangleright If we start from a deconfined plasma, we expect to eventually arrive in the confining phase...
- \triangleright There would be quantum tunnelling which we cannot describe, so we introduce a "seed" in the initial conditions

(3D Witten model in a simplified hydro+scalar field description)

- \blacktriangleright If we start from a deconfined plasma, we expect to eventually arrive in the confining phase...
- \triangleright There would be quantum tunnelling which we cannot describe, so we introduce a "seed" in the initial conditions

(3D Witten model in a simplified hydro+scalar field description)

- If we start from a deconfined plasma, we expect to eventually arrive in the confining phase...
- \triangleright There would be quantum tunnelling which we cannot describe, so we introduce a "seed" in the initial conditions

blue – deconfined phase **red** – confined phase

(3D Witten model in a simplified hydro+scalar field description)

- If we start from a deconfined plasma, we expect to eventually arrive in the confining phase...
- \triangleright There would be quantum tunnelling which we cannot describe, so we introduce a "seed" in the initial conditions

(3D Witten model in a simplified hydro+scalar field description)

- If we start from a deconfined plasma, we expect to eventually arrive in the confining phase...
- \triangleright There would be quantum tunnelling which we cannot describe, so we introduce a "seed" in the initial conditions

blue – deconfined phase **red** – confined phase

- \triangleright The plasma in-between does not seem to want to decay!
- \blacktriangleright We would expect it to be more and more supercooled $(\mathcal{T}\sim 1/\tau^{\frac{1}{3}})$ **X**
- **►** But it effectively heats up and $T \sim T_c \sim 1$ \checkmark
- \blacktriangleright It is stable w.r.t. bubble nucleation!

- \blacktriangleright The plasma in-between does not seem to want to decay!
- \blacktriangleright We would expect it to be more and more supercooled $(\mathcal{T} \sim 1/\tau^{\frac{1}{3}})$ **X**
- **►** But it effectively heats up and $T \sim T_c \sim 1$ \checkmark
- \blacktriangleright It is stable w.r.t. bubble nucleation!

- \triangleright The plasma in-between does not seem to want to decay!
- \blacktriangleright We would expect it to be more and more supercooled $(\mathcal{T} \sim 1/\tau^{\frac{1}{3}})$ **X**
- **►** But it effectively heats up and $T \sim T_c \sim 1$
- \blacktriangleright It is stable w.r.t. bubble nucleation!

- \triangleright The plasma in-between does not seem to want to decay!
- ► We would expect it to be more and more supercooled ($\mathcal{T} \sim 1/\tau^{\frac{1}{3}}$) **X**
- **►** But it effectively heats up and $T \sim T_c \sim 1$
- \blacktriangleright It is stable w.r.t. bubble nucleation!

- \triangleright The plasma in-between does not seem to want to decay!
- ► We would expect it to be more and more supercooled ($\mathcal{T} \sim 1/\tau^{\frac{1}{3}}$) **X**
- **►** But it effectively heats up and $T \sim T_c \sim 1$ ✓
- \blacktriangleright It is stable w.r.t. bubble nucleation!

- \triangleright The plasma in-between does not seem to want to decay!
- ► We would expect it to be more and more supercooled ($\mathcal{T} \sim 1/\tau^{\frac{1}{3}}$) **X**
- **►** But it effectively heats up and $T \sim T_c \sim 1$ ✓
- \blacktriangleright It is stable w.r.t. bubble nucleation!

At later times *T* is around *T^c* and does not go down despite boost invariant expansion!

At later times *T* is around *T^c* and does not go down despite boost invariant expansion!

At later times *T* is around *T^c* and does not go down despite boost invariant expansion!

At later times T is around T_c and does not go down despite boost invariant expansion!

 \triangleright Recall entropy per unit rapidity

$$
S\propto \tau V_{\perp}\,T(\tau)^3\sim {\mathsf{const}}\qquad\text{for}\quad T(\tau)\sim \frac{1}{\tau^{\frac{1}{3}}}
$$

 \triangleright But we can also have entropy conservation with

$$
T(\tau) \sim \text{const}
$$
 and $V_{\perp} \sim \frac{1}{\tau}$

 \blacktriangleright Indeed this holds until the size is of the order of the domain wall thickness...

 \blacktriangleright Recall entropy per unit rapidity

$$
S \propto \tau V_{\perp} T(\tau)^3 \sim \text{const}
$$
 for $T(\tau) \sim \frac{1}{\tau^{\frac{1}{3}}}$

 \triangleright But we can also have entropy conservation with

$$
T(\tau) \sim \text{const}
$$
 and $V_{\perp} \sim \frac{1}{\tau}$

 \triangleright Indeed this holds until the size is of the order of the domain wall thickness...

 \triangleright Recall entropy per unit rapidity

$$
S \propto \tau V_{\perp} T(\tau)^3 \sim \text{const} \qquad \text{for} \quad T(\tau) \sim \frac{1}{\tau^{\frac{1}{3}}}
$$

 \triangleright But we can also have entropy conservation with

$$
T(\tau) \sim \text{const}
$$
 and $V_{\perp} \sim \frac{1}{\tau}$

Indeed this holds until the size is of the order of the domain wall thickness...

 \triangleright Recall entropy per unit rapidity

$$
S \propto \tau V_{\perp} T(\tau)^3 \sim \text{const} \qquad \text{for} \quad T(\tau) \sim \frac{1}{\tau^{\frac{1}{3}}}
$$

 \triangleright But we can also have entropy conservation with

$$
T(\tau) \sim \text{const}
$$
 and $V_{\perp} \sim \frac{1}{\tau}$

 \triangleright Indeed this holds until the size is of the order of the domain wall thickness...

Then, the plasma starts "dissolving" into the confining phase:

21 / 22

Then, the plasma starts "dissolving" into the confining phase:

Then, the plasma starts "dissolving" into the confining phase:

This may perhaps be seen as an analog of "hadronization" (or "glueballization")??

work in progress...

21 / 22

- \triangleright The dynamics of domain walls at strong coupling is much simpler than one could expect
- **If** The pressure difference between the phases is **not** localized in the vicinity of the **domain wall**
- ► ... but within a hydrodynamic wave in the high entropy phase
- \triangleright This provides a very simple hydrodynamic formula for the domain wall velocity expressed purely in terms of the equation of state
- \triangleright We studied phase transition in a boost-invariant setting
- \triangleright We find evidence for hot remnants of plasma which shrink but do not become overcooled.

\triangleright The dynamics of domain walls at strong coupling is much simpler than one could expect

- **If** The pressure difference between the phases is **not** localized in the vicinity of the **domain wall**
- ► ... but within a hydrodynamic wave in the high entropy phase
- \triangleright This provides a very simple hydrodynamic formula for the domain wall velocity expressed purely in terms of the equation of state
- \triangleright We studied phase transition in a boost-invariant setting
- \triangleright We find evidence for hot remnants of plasma which shrink but do not become overcooled...

- \triangleright The dynamics of domain walls at strong coupling is much simpler than one could expect
- **If** The pressure difference between the phases is **not** localized in the vicinity of the **domain wall**
- ► ... but within a hydrodynamic wave in the high entropy phase
- \triangleright This provides a very simple hydrodynamic formula for the domain wall velocity expressed purely in terms of the equation of state
- \triangleright We studied phase transition in a boost-invariant setting
- \triangleright We find evidence for hot remnants of plasma which shrink but do not become overcooled...

- \triangleright The dynamics of domain walls at strong coupling is much simpler than one could expect
- **If** The pressure difference between the phases is **not** localized in the vicinity of the **domain wall**
- ► ... but within a hydrodynamic wave in the high entropy phase
- \triangleright This provides a very simple hydrodynamic formula for the domain wall velocity expressed purely in terms of the equation of state
- \triangleright We studied phase transition in a boost-invariant setting
- \triangleright We find evidence for hot remnants of plasma which shrink but do not become overcooled...

- \triangleright The dynamics of domain walls at strong coupling is much simpler than one could expect
- **If** The pressure difference between the phases is **not** localized in the vicinity of the **domain wall**
- ► ... but within a hydrodynamic wave in the high entropy phase
- \triangleright This provides a very simple hydrodynamic formula for the domain wall velocity expressed purely in terms of the equation of state
- \triangleright We studied phase transition in a boost-invariant setting
- \triangleright We find evidence for hot remnants of plasma which shrink but do not become overcooled...

- \triangleright The dynamics of domain walls at strong coupling is much simpler than one could expect
- **If** The pressure difference between the phases is **not** localized in the vicinity of the **domain wall**
- ► ... but within a hydrodynamic wave in the high entropy phase
- \triangleright This provides a very simple hydrodynamic formula for the domain wall velocity expressed purely in terms of the equation of state
- \triangleright We studied phase transition in a boost-invariant setting
- \triangleright We find evidence for hot remnants of plasma which shrink but do not become overcooled...

- \triangleright The dynamics of domain walls at strong coupling is much simpler than one could expect
- I The pressure difference between the phases is **not** localized in the vicinity of the **domain wall**
- ► ... but within a hydrodynamic wave in the high entropy phase
- \triangleright This provides a very simple hydrodynamic formula for the domain wall velocity expressed purely in terms of the equation of state
- \triangleright We studied phase transition in a boost-invariant setting
- \triangleright We find evidence for hot remnants of plasma which shrink but do not become overcooled...