Strongly coupled dynamics with a phase transition – some surprises

Romuald A. Janik

Jagiellonian University Kraków

RJ, M. Järvinen, H. Soltanpanahi, J. Sonnenschein, PRL '22 [2205.06274] RJ, M. Järvinen, J. Sonnenschein, to appear...

Long term motivation

Domain wall velocities

Conventional picture and a key question Results of holographic simulations A simple formula for domain wall velocity

Boost-invariant expansion and hot remnants Boost-invariant expansion and cooling Reheating of plasma remnants Entropy considerations

Long term motivation

Domain wall velocities

Conventional picture and a key question Results of holographic simulations A simple formula for domain wall velocity

Boost-invariant expansion and hot remnants Boost-invariant expansion and cooling Reheating of plasma remnants Entropy considerations

Long term motivation

Domain wall velocities

Conventional picture and a key question Results of holographic simulations A simple formula for domain wall velocity

Boost-invariant expansion and hot remnants

Boost-invariant expansion and cooling Reheating of plasma remnants Entropy considerations

Long term motivation

Domain wall velocities

Conventional picture and a key question Results of holographic simulations A simple formula for domain wall velocity

Boost-invariant expansion and hot remnants

Boost-invariant expansion and cooling Reheating of plasma remnants Entropy considerations

Question: How to understand phase transitions in real time within holography?

- Phase transitions in equilibrium in holography correspond to switching between two spacetime geometries
- It is nontrivial what happens in real time...
- In some cases there is a classical gravity description, in others probably not...

Theoretically interesting even for its own sake!

But also interesting real-world applications:

What does holography tell us about hadronization??

- ▶ 1st order phase transition reappears at nonzero density...
- Some physics in early universe??

Question: How to understand phase transitions in real time within holography?

- Phase transitions in equilibrium in holography correspond to switching between two spacetime geometries
- It is nontrivial what happens in real time...
- In some cases there is a classical gravity description, in others probably not...

Theoretically interesting even for its own sake!

But also interesting real-world applications:

What does holography tell us about hadronization??

- ▶ 1st order phase transition reappears at nonzero density...
- Some physics in early universe??

Question: How to understand phase transitions in real time within holography?

- Phase transitions in equilibrium in holography correspond to switching between two spacetime geometries
- It is nontrivial what happens in real time...
- In some cases there is a classical gravity description, in others probably not...

Theoretically interesting even for its own sake!

But also interesting real-world applications:

What does holography tell us about hadronization??

- ▶ 1st order phase transition reappears at nonzero density...
- Some physics in early universe??

Question: How to understand phase transitions in real time within holography?

- Phase transitions in equilibrium in holography correspond to switching between two spacetime geometries
- It is nontrivial what happens in real time...
- In some cases there is a classical gravity description, in others probably not...

Theoretically interesting even for its own sake!

But also interesting real-world applications:

What does holography tell us about hadronization??

- ▶ 1st order phase transition reappears at nonzero density...
- Some physics in early universe??

Question: How to understand phase transitions in real time within holography?

- Phase transitions in equilibrium in holography correspond to switching between two spacetime geometries
- It is nontrivial what happens in real time...
- In some cases there is a classical gravity description, in others probably not...

Theoretically interesting even for its own sake!

But also interesting real-world applications:

What does holography tell us about hadronization??

- ▶ 1st order phase transition reappears at nonzero density...
- Some physics in early universe??

Question: How to understand phase transitions in real time within holography?

- Phase transitions in equilibrium in holography correspond to switching between two spacetime geometries
- It is nontrivial what happens in real time...
- In some cases there is a classical gravity description, in others probably not...

Theoretically interesting even for its own sake!

But also interesting real-world applications:

What does holography tell us about hadronization??

- ▶ 1st order phase transition reappears at nonzero density...
- Some physics in early universe??

Question: How to understand phase transitions in real time within holography?

- Phase transitions in equilibrium in holography correspond to switching between two spacetime geometries
- It is nontrivial what happens in real time...
- In some cases there is a classical gravity description, in others probably not...

Theoretically interesting even for its own sake!

But also interesting real-world applications:

What does holography tell us about hadronization??

- 1st order phase transition reappears at nonzero density...
- Some physics in early universe??

Question: How to understand phase transitions in real time within holography?

- Phase transitions in equilibrium in holography correspond to switching between two spacetime geometries
- It is nontrivial what happens in real time...
- In some cases there is a classical gravity description, in others probably not...

Theoretically interesting even for its own sake!

But also interesting real-world applications:

What does holography tell us about hadronization??

- 1st order phase transition reappears at nonzero density...
- Some physics in early universe??

Question: How to understand phase transitions in real time within holography?

- Phase transitions in equilibrium in holography correspond to switching between two spacetime geometries
- It is nontrivial what happens in real time...
- In some cases there is a classical gravity description, in others probably not...

Theoretically interesting even for its own sake!

But also interesting real-world applications:

What does holography tell us about hadronization??

- ▶ 1st order phase transition reappears at nonzero density...
- Some physics in early universe??

Question: How to understand phase transitions in real time within holography?

- Phase transitions in equilibrium in holography correspond to switching between two spacetime geometries
- It is nontrivial what happens in real time...
- In some cases there is a classical gravity description, in others probably not...

Theoretically interesting even for its own sake!

But also interesting real-world applications:

What does holography tell us about hadronization??

caution for $N_c = 3$: crossover!

▶ 1st order phase transition reappears at nonzero density...

Some physics in early universe??

Question: How to understand phase transitions in real time within holography?

- Phase transitions in equilibrium in holography correspond to switching between two spacetime geometries
- It is nontrivial what happens in real time...
- In some cases there is a classical gravity description, in others probably not...

Theoretically interesting even for its own sake!

But also interesting real-world applications:

What does holography tell us about hadronization??

- ▶ 1st order phase transition reappears at nonzero density...
- Some physics in early universe??

1. Bubble wall velocities

- At a 1st order phase transition T = T_c, we can have domains of coexisting phases separated by domain walls
- The pressures on both sides are balanced and the domain wall can be static...

Question: What happens when we move away from $T = T_c$?

- This can occur for nucleated bubbles of a stable phase within an supercooled medium
- At an interface between phases away from $T = T_c$
- Or an interface between phases at different temperatures

At a 1st order phase transition T = T_c, we can have domains of coexisting phases separated by domain walls

The pressures on both sides are balanced and the domain wall can be static...

Question: What happens when we move away from $T = T_c$?

- This can occur for nucleated bubbles of a stable phase within an supercooled medium
- At an interface between phases away from $T = T_c$
- Or an interface between phases at different temperatures

- At a 1st order phase transition T = T_c, we can have domains of coexisting phases separated by domain walls
- The pressures on both sides are balanced and the domain wall can be static...

Question: What happens when we move away from $T = T_c$?

- This can occur for nucleated bubbles of a stable phase within an supercooled medium
- At an interface between phases away from $T = T_c$
- Or an interface between phases at different temperatures

- At a 1st order phase transition T = T_c, we can have domains of coexisting phases separated by domain walls
- The pressures on both sides are balanced and the domain wall can be static...

Question: What happens when we move away from $T = T_c$?

- This can occur for nucleated bubbles of a stable phase within an supercooled medium
- At an interface between phases away from $T = T_c$
- Or an interface between phases at different temperatures

- At a 1st order phase transition T = T_c, we can have domains of coexisting phases separated by domain walls
- The pressures on both sides are balanced and the domain wall can be static...

Question: What happens when we move away from $T = T_c$?

- This can occur for nucleated bubbles of a stable phase within an supercooled medium
- At an interface between phases away from $T = T_c$
- Or an interface between phases at different temperatures

- At a 1st order phase transition T = T_c, we can have domains of coexisting phases separated by domain walls
- The pressures on both sides are balanced and the domain wall can be static...

Question: What happens when we move away from $T = T_c$?

- This can occur for nucleated bubbles of a stable phase within an supercooled medium
- At an interface between phases away from $T = T_c$
- Or an interface between phases at different temperatures

- At a 1st order phase transition T = T_c, we can have domains of coexisting phases separated by domain walls
- The pressures on both sides are balanced and the domain wall can be static...

Question: What happens when we move away from $T = T_c$?

- This can occur for nucleated bubbles of a stable phase within an supercooled medium
- At an interface between phases away from $T = T_c$
- Or an interface between phases at different temperatures

Goal:

Understand bubble wall velocities at strong coupling...

...but this does not happen — the domain wall ultimately moves with a constant velocity...

Common lore: friction in the second phase balances the net force
 — challenging to calculate...

...but this does not happen — the domain wall ultimately moves with a constant velocity...

Common lore: friction in the second phase balances the net force
 — challenging to calculate...

...but this does not happen — the domain wall ultimately moves with a constant velocity...

Common lore: friction in the second phase balances the net force
 — challenging to calculate...

...but this does not happen — the domain wall ultimately moves with a constant velocity...

Common lore: friction in the second phase balances the net force
 — challenging to calculate...

$$\rho_{4} > \rho_{2}$$
 $r_{en}^{\nu(1)} \rho_{2}$

...but this does not happen — the domain wall ultimately moves with a constant velocity...

Common lore: friction in the second phase balances the net force
 — challenging to calculate...

$$\rho_{A} \supset \rho_{2}$$
 ρ_{2} ρ_{2

- ► The net force across the domain wall implies that the pressure difference is localized close to the domain wall...
- It is not obvious *a-priori* if this is always the case...

The net force across the domain wall implies that the pressure difference is localized close to the domain wall...

It is not obvious a-priori if this is always the case...

- The net force across the domain wall implies that the pressure difference is localized close to the domain wall...
- It is not obvious a-priori if this is always the case...

- The net force across the domain wall implies that the pressure difference is localized close to the domain wall...
- It is not obvious a-priori if this is always the case...

Holographic setups

- Witten model in 3D confinement/deconfinement transition use simplified hydrodynamics+scalar field fitted to holography
- **2.** Holographic gravity+scalar model with a transition between two deconfined phases

full holographic simulation

Holographic setups

- 1. Witten model in 3D confinement/deconfinement transition use simplified hydrodynamics+scalar field fitted to holography
- 2. Holographic gravity+scalar model with a transition between two deconfined phases

full holographic simulation
Holographic setups

- Witten model in 3D confinement/deconfinement transition use simplified hydrodynamics+scalar field fitted to holography
- **2.** Holographic gravity+scalar model with a transition between two deconfined phases

full holographic simulation

Holographic setups

- Witten model in 3D confinement/deconfinement transition use simplified hydrodynamics+scalar field fitted to holography
- **2.** Holographic gravity+scalar model with a transition between two deconfined phases

full holographic simulation

Holographic setups

- Witten model in 3D confinement/deconfinement transition use simplified hydrodynamics+scalar field fitted to holography
- **2.** Holographic gravity+scalar model with a transition between two deconfined phases

full holographic simulation

- ▶ We increase the temperature of the high energy phase...
- ▶ We perform time evolution from the above static initial conditions...
- The pressure in each phase may be read off from the T^{ys} component of the energy-momentum tensor

- ▶ We increase the temperature of the high energy phase...
- ▶ We perform time evolution from the above static initial conditions...
- The pressure in each phase may be read off from the T^{ys} component of the energy-momentum tensor

- ▶ We increase the temperature of the high energy phase...
- ▶ We perform time evolution from the above static initial conditions...
- The pressure in each phase may be read off from the T^{yy} component of the energy-momentum tensor

- ▶ We increase the temperature of the high energy phase...
- ▶ We perform time evolution from the above static initial conditions...
- The pressure in each phase may be read off from the T^{yy} component of the energy-momentum tensor

- ► The large pressure difference appears **away** from the domain wall
- ► The pressure is essentially constant across the domain wall, and very close to p(T_c)...

- ▶ The large pressure difference appears **away** from the domain wall
- The pressure is essentially constant across the domain wall, and very close to p(T_c)...

- ▶ The large pressure difference appears **away** from the domain wall
- The pressure is essentially constant across the domain wall, and very close to p(T_c)...

- ► The large pressure difference appears **away** from the domain wall
- ► The pressure is essentially constant across the domain wall, and very close to p(T_c)...

- The large pressure difference appears away from the domain wall
- ► The pressure is essentially constant across the domain wall, and very close to p(T_c)...

Key features:

- The large pressure difference appears away from the domain wall
- ▶ The change in pressures occurs in the high energy density phase

ightarrow hydrodynamic description

The pressure is essentially constant across the domain wall, and very close to p(T_c)...

- The large pressure difference appears away from the domain wall
- ► The change in pressures occurs in the high energy density phase → hydrodynamic description
- ► The pressure is essentially constant across the domain wall, and very close to p(T_c)...

- The large pressure difference appears away from the domain wall
- ► The change in pressures occurs in the high energy density phase → hydrodynamic description
- The pressure is essentially constant across the domain wall, and very close to p(T_c)...

We can extract the hydrodynamic velocity from $\mathcal{T}^{\times t}$

- The hydrodynamic velocity is quite close to the domain wall velocity v_{dw}
- This gets better with increasing ratio of entropies in the two phases...
- We can fomulate finding v_{dw} as a hydrodynamic problem:

This leads to the formula:

$$v_{dw} = anh \int_{
ho_c}^{
ho_A} rac{1}{(arepsilon+
ho)c_s} d
ho$$

We can extract the hydrodynamic velocity from $\mathcal{T}^{\times t}$

- The hydrodynamic velocity is quite close to the domain wall velocity v_{dw}
- This gets better with increasing ratio of entropies in the two phases...
- We can fomulate finding v_{dw} as a hydrodynamic problem:

This leads to the formula:

$$v_{dw} = anh \int_{
ho_c}^{
ho_A} rac{1}{(arepsilon+
ho)c_s} d
ho$$

We can extract the hydrodynamic velocity from $T^{\times t}$

The hydrodynamic velocity is quite close to the domain wall velocity v_{dw}

- This gets better with increasing ratio of entropies in the two phases...
- We can fomulate finding v_{dw} as a hydrodynamic problem:

This leads to the formula:

$$v_{dw} = anh \int_{
ho_c}^{
ho_A} rac{1}{(arepsilon+
ho)c_s} d
ho$$

We can extract the hydrodynamic velocity from $T^{\times t}$

- The hydrodynamic velocity is quite close to the domain wall velocity v_{dw}
- This gets better with increasing ratio of entropies in the two phases...
- We can fomulate finding v_{dw} as a hydrodynamic problem:

This leads to the formula:

$$v_{dw} = anh \int_{
ho_c}^{
ho_A} rac{1}{(arepsilon+
ho)c_s} d
ho$$

We can extract the hydrodynamic velocity from $T^{\times t}$

- The hydrodynamic velocity is quite close to the domain wall velocity v_{dw}
- This gets better with increasing ratio of entropies in the two phases...
- We can fomulate finding v_{dw} as a hydrodynamic problem:

This leads to the formula:

$$v_{dw} = anh \int_{
ho_c}^{
ho_A} rac{1}{(arepsilon+
ho)c_s} d
ho$$

We can extract the hydrodynamic velocity from $T^{\times t}$

- The hydrodynamic velocity is quite close to the domain wall velocity v_{dw}
- This gets better with increasing ratio of entropies in the two phases...
- ▶ We can fomulate finding *v*_{dw} as a hydrodynamic problem:

This leads to the formula:

$$m{v}_{dw}= anh \int_{
ho_c}^{
ho_A} rac{1}{(arepsilon+
ho)c_s} d
ho$$

We can extract the hydrodynamic velocity from $T^{\times t}$

- The hydrodynamic velocity is quite close to the domain wall velocity v_{dw}
- This gets better with increasing ratio of entropies in the two phases...
- ▶ We can fomulate finding *v*_{dw} as a hydrodynamic problem:

This leads to the formula:

$$m{v}_{dw} = anh \int_{
ho_c}^{
ho_A} rac{1}{(arepsilon+
ho) c_s} d
ho$$

Compare with holographic simulations:

for a nucleated bubble at rest one can correct for deviation of v_{dw} from v_{hydro}

Compare with holographic simulations:

for a nucleated bubble at rest one can correct for deviation of v_{dw} from v_{hydro}

Compare with holographic simulations:

for a nucleated bubble at rest one can correct for deviation of v_{dw} from v_{hydro}

Compare with holographic simulations:

for a nucleated bubble at rest one can correct for deviation of v_{dw} from v_{hydro}

Domain wall velocities

- 1. Movement of a domain wall is accompanied by a hydrodynamic wave
- 2. The pressure difference is realized on the hydro wave and **not** on the domain wall
- No need to invoke friction domain wall velocity expressed in terms of EOS (perfect fluid hydro)
- 4. At the domain wall the pressure is approximately $p(T_c)$

Domain wall velocities

- 1. Movement of a domain wall is accompanied by a hydrodynamic wave
- 2. The pressure difference is realized on the hydro wave and **not** on the domain wall
- No need to invoke friction domain wall velocity expressed in terms of EOS (perfect fluid hydro)
- 4. At the domain wall the pressure is approximately $p(T_c)$

- 1. Movement of a domain wall is accompanied by a hydrodynamic wave
- 2. The pressure difference is realized on the hydro wave and **not** on the domain wall
- No need to invoke friction domain wall velocity expressed in terms of EOS (perfect fluid hydro)
- 4. At the domain wall the pressure is approximately $p(T_c)$

- 1. Movement of a domain wall is accompanied by a hydrodynamic wave
- 2. The pressure difference is realized on the hydro wave and **not** on the domain wall
- No need to invoke friction domain wall velocity expressed in terms of EOS (perfect fluid hydro)
- 4. At the domain wall the pressure is approximately $p(T_c)$

- 1. Movement of a domain wall is accompanied by a hydrodynamic wave
- 2. The pressure difference is realized on the hydro wave and **not** on the domain wall
- No need to invoke friction domain wall velocity expressed in terms of EOS (perfect fluid hydro)
- 4. At the domain wall the pressure is approximately $p(T_c)$

2. Boost-invariant expansion and hot remnants

- The plasma undergoes boost-invariant expansion in the longitudinal direction
- The expansion induces generically cooling and thus naturally pushes the system across the phase transition
- A scale invariant plasma cools as $T(au) \sim 1/ au^{rac{1}{3}}$
- Entropy per unity rapidity is preserved

$S \propto au V_{\perp} T^3 \sim const$

- The plasma undergoes boost-invariant expansion in the longitudinal direction
- The expansion induces generically cooling and thus naturally pushes the system across the phase transition
- A scale invariant plasma cools as $T(au) \sim 1/ au^{rac{1}{3}}$
- Entropy per unity rapidity is preserved

 $S \propto au V_{\perp} T^3 \sim const$

- The plasma undergoes boost-invariant expansion in the longitudinal direction
- The expansion induces generically cooling and thus naturally pushes the system across the phase transition

• A scale invariant plasma cools as $T(\tau) \sim 1/\tau^{\frac{1}{3}}$

Entropy per unity rapidity is preserved

 $S \propto au V_{\perp} T^3 \sim const$

- The plasma undergoes boost-invariant expansion in the longitudinal direction
- The expansion induces generically cooling and thus naturally pushes the system across the phase transition
- A scale invariant plasma cools as $T(au) \sim 1/ au^{rac{1}{3}}$
- Entropy per unity rapidity is preserved

$S \propto au V_{\perp} T^3 \sim const$
Boost-invariance and 1st order phase transition

- The plasma undergoes boost-invariant expansion in the longitudinal direction
- The expansion induces generically cooling and thus naturally pushes the system across the phase transition
- A scale invariant plasma cools as $T(au) \sim 1/ au^{rac{1}{3}}$
- Entropy per unity rapidity is preserved

 $S \propto \tau V_{\perp} T^3 \sim const$

We would expect the expanding plasma to be more and more supercooled and transitioning to the other phase through nucleating more and more bubbles... ► We study transverse dynamics in a theory with a confinement deconfinement phase transition

(3D Witten model in a simplified hydro+scalar field description)

- If we start from a deconfined plasma, we expect to eventually arrive in the confining phase...
- There would be quantum tunnelling which we cannot describe, so we introduce a "seed" in the initial conditions

We study transverse dynamics in a theory with a confinement deconfinement phase transition

(3D Witten model in a simplified hydro+scalar field description)

- If we start from a deconfined plasma, we expect to eventually arrive in the confining phase...
- There would be quantum tunnelling which we cannot describe, so we introduce a "seed" in the initial conditions

We study transverse dynamics in a theory with a confinement deconfinement phase transition

(3D Witten model in a simplified hydro+scalar field description)

- If we start from a deconfined plasma, we expect to eventually arrive in the confining phase...
- There would be quantum tunnelling which we cannot describe, so we introduce a "seed" in the initial conditions

blue – deconfined phase

We study transverse dynamics in a theory with a confinement deconfinement phase transition

(3D Witten model in a simplified hydro+scalar field description)

- If we start from a deconfined plasma, we expect to eventually arrive in the confining phase...
- There would be quantum tunnelling which we cannot describe, so we introduce a "seed" in the initial conditions

► We study transverse dynamics in a theory with a confinement deconfinement phase transition

(3D Witten model in a simplified hydro+scalar field description)

- If we start from a deconfined plasma, we expect to eventually arrive in the confining phase...
- There would be quantum tunnelling which we cannot describe, so we introduce a "seed" in the initial conditions

blue - deconfined phase

- ▶ The plasma in-between does not seem to want to decay!
- \blacktriangleright We would expect it to be more and more supercooled ($T \sim 1/ au^{rac{1}{3}}$) X
- \blacktriangleright But it effectively heats up and $\mathit{T} \sim \mathit{T_c} \sim 1$ \checkmark
- It is stable w.r.t. bubble nucleation!

- ▶ The plasma in-between does not seem to want to decay!
- We would expect it to be more and more supercooled $(T \sim 1/ au^{rac{1}{3}})$ X
- \blacktriangleright But it effectively heats up and $\mathit{T} \sim \mathit{T_c} \sim 1$ \checkmark
- It is stable w.r.t. bubble nucleation!

- The plasma in-between does not seem to want to decay!
- \blacktriangleright We would expect it to be more and more supercooled $(T \sim 1/ au^{rac{1}{3}})$ X
- \blacktriangleright But it effectively heats up and $\mathit{T} \sim \mathit{T_c} \sim 1$ \checkmark
- It is stable w.r.t. bubble nucleation!

- The plasma in-between does not seem to want to decay!
- \blacktriangleright We would expect it to be more and more supercooled ($T \sim 1/ au^{rac{1}{3}}$) X
- \blacktriangleright But it effectively heats up and $\mathit{T} \sim \mathit{T_c} \sim 1$
- It is stable w.r.t. bubble nucleation!

- The plasma in-between does not seem to want to decay!
- \blacktriangleright We would expect it to be more and more supercooled $(T \sim 1/ au^{rac{1}{3}})$ X
- \blacktriangleright But it effectively heats up and ${\it T} \sim {\it T_c} \sim 1$ \checkmark

It is stable w.r.t. bubble nucleation!

- The plasma in-between does not seem to want to decay!
- \blacktriangleright We would expect it to be more and more supercooled ($T \sim 1/ au^{rac{1}{3}}$) X
- \blacktriangleright But it effectively heats up and ${\it T} \sim {\it T_c} \sim 1$ \checkmark
- It is stable w.r.t. bubble nucleation!

At later times T is around T_c and does not go down despite boost invariant expansion!

At later times T is around T_c and does not go down despite boost invariant expansion!

At later times T is around T_c and does not go down despite boost invariant expansion!

At later times T is around T_c and does not go down despite boost invariant expansion!

Recall entropy per unit rapidity

$$S \propto au V_{\perp} T(au)^3 \sim \textit{const} \qquad ext{for} \quad T(au) \sim rac{1}{ au^{rac{1}{3}}}$$

But we can also have entropy conservation with

$$T(au)\sim {\it const}$$
 and $V_\perp\sim rac{1}{ au}$

Indeed this holds until the size is of the order of the domain wall thickness...

Recall entropy per unit rapidity

$$S \propto au V_{\perp} T(au)^3 \sim \textit{const} \qquad ext{for} \quad T(au) \sim rac{1}{ au^{rac{1}{3}}}$$

But we can also have entropy conservation with

$$T(au)\sim {\it const}$$
 and $V_\perp\sim {1\over au}$

Indeed this holds until the size is of the order of the domain wall thickness...

Recall entropy per unit rapidity

$$S \propto au V_{\perp} T(au)^3 \sim \textit{const} \qquad ext{for} \quad T(au) \sim rac{1}{ au^{rac{1}{3}}}$$

But we can also have entropy conservation with

$$T(au) \sim const$$
 and $V_{\perp} \sim rac{1}{ au}$

Indeed this holds until the size is of the order of the domain wall thickness...

Recall entropy per unit rapidity

$$S \propto au V_{\perp} T(au)^3 \sim \textit{const} \qquad ext{for} \quad T(au) \sim rac{1}{ au^{rac{1}{3}}}$$

But we can also have entropy conservation with

$$T(au) \sim const$$
 and $V_{\perp} \sim rac{1}{ au}$

Indeed this holds until the size is of the order of the domain wall thickness...

Then, the plasma starts "dissolving" into the confining phase:

This may perhaps be seen as an analog of "hadronization" (or "glueballization")??

work in progress...

21 / 22

Then, the plasma starts "dissolving" into the confining phase:

"This may perhaps be seen as an analog of "hadronization" (or "glueballization")??

work in progress...

21 / 22

Then, the plasma starts "dissolving" into the confining phase:

This may perhaps be seen as an analog of "hadronization" (or "glueballization")??

work in progress...

21 / 22

- The dynamics of domain walls at strong coupling is much simpler than one could expect
- ► The pressure difference between the phases is **not** localized in the vicinity of the **domain wall**
- but within a hydrodynamic wave in the high entropy phase
- This provides a very simple hydrodynamic formula for the domain wall velocity expressed purely in terms of the equation of state
- We studied phase transition in a boost-invariant setting
- We find evidence for hot remnants of plasma which shrink but do not become overcooled...

 The dynamics of domain walls at strong coupling is much simpler than one could expect

- The pressure difference between the phases is not localized in the vicinity of the domain wall
- ... but within a hydrodynamic wave in the high entropy phase
- This provides a very simple hydrodynamic formula for the domain wall velocity expressed purely in terms of the equation of state
- We studied phase transition in a boost-invariant setting
- ▶ We find evidence for hot remnants of plasma which shrink but do not become overcooled...

- The dynamics of domain walls at strong coupling is much simpler than one could expect
- The pressure difference between the phases is not localized in the vicinity of the domain wall
- ... but within a hydrodynamic wave in the high entropy phase
- This provides a very simple hydrodynamic formula for the domain wall velocity expressed purely in terms of the equation of state
- We studied phase transition in a boost-invariant setting
- We find evidence for hot remnants of plasma which shrink but do not become overcooled...

- The dynamics of domain walls at strong coupling is much simpler than one could expect
- The pressure difference between the phases is not localized in the vicinity of the domain wall
- but within a hydrodynamic wave in the high entropy phase
- This provides a very simple hydrodynamic formula for the domain wall velocity expressed purely in terms of the equation of state
- We studied phase transition in a boost-invariant setting
- We find evidence for hot remnants of plasma which shrink but do not become overcooled...

- The dynamics of domain walls at strong coupling is much simpler than one could expect
- The pressure difference between the phases is not localized in the vicinity of the domain wall
- but within a hydrodynamic wave in the high entropy phase
- This provides a very simple hydrodynamic formula for the domain wall velocity expressed purely in terms of the equation of state
- We studied phase transition in a boost-invariant setting
- ▶ We find evidence for hot remnants of plasma which shrink but do not become overcooled...

- The dynamics of domain walls at strong coupling is much simpler than one could expect
- The pressure difference between the phases is not localized in the vicinity of the domain wall
- but within a hydrodynamic wave in the high entropy phase
- This provides a very simple hydrodynamic formula for the domain wall velocity expressed purely in terms of the equation of state
- We studied phase transition in a boost-invariant setting
- We find evidence for hot remnants of plasma which shrink but do not become overcooled...

- The dynamics of domain walls at strong coupling is much simpler than one could expect
- The pressure difference between the phases is not localized in the vicinity of the domain wall
- but within a hydrodynamic wave in the high entropy phase
- This provides a very simple hydrodynamic formula for the domain wall velocity expressed purely in terms of the equation of state
- We studied phase transition in a boost-invariant setting
- We find evidence for hot remnants of plasma which shrink but do not become overcooled...