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switching between two spacetime geometries

» |t is nontrivial what happens in real time...
» In some cases there is a classical gravity description, in others
probably not...

Theoretically interesting even for its own sake!

But also interesting real-world applications:

» What does holography tell us about hadronization??
caution for N. = 3: crossover!
» 1° order phase transition reappears at nonzero density...

» Some physics in early universe??
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Introduction

» At a 15 order phase transition T = T, we can have domains of
coexisting phases separated by domain walls

» The pressures on both sides are balanced and the domain wall can
be static...

Question: What happens when we move away from T = T.?

» This can occur for nucleated bubbles of a stable phase within an
supercooled medium

» At an interface between phases away from T = T,

» Or an interface between phases at different temperatures
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Goal:

Understand bubble wall velocities at strong coupling...
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» The pressures on both sides are not balanced so one would expect
accelerated motion...

> ...but this does not happen — the domain wall ultimately moves
with a constant velocity...

» Common lore: friction in the second phase balances the net force
— challenging to calculate...

Our claim: At strong coupling (+ some entropy ratio assumptions),
the domain wall velocity can be understood in a much simpler way

using essentially only the equation of state...
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Recall the standard picture:

Px rz Pe
P47 Py

» The net force across the domain wall implies that the pressure
difference is localized close to the domain wall...

» It is not obvious a-priori if this is always the case...

Perform holographic simulation and read off the pressure profile...
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Holographic setups

1. Witten model in 3D — confinement/deconfinement transition
use simplified hydrodynamics+scalar field fitted to holography

2. Holographic gravity+scalar model with a transition between two
deconfined phases

full holographic simulation
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Simplest scenario
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Simplest scenario

HIGH ENERGY PHASE B

Lov ENERGY PHASE

» We increase the temperature of the high energy phase...
» We perform time evolution from the above static initial conditions...

» The pressure in each phase may be read off from the T
component of the energy-momentum tensor
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Spacetime pressure profiles

™=p
0.75|
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0.50 \ r—__.._

0.45 y
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Key features:

» The large pressure difference appears away from the domain wall

» The change in pressures occurs in the high energy density phase
— hydrodynamic description

> The pressure is essentially constant across the domain wall, and very
close to p(T¢)...
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What happens in the high energy phase?

We can extract the hydrodynamic velocity from T**
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What happens in the high energy phase?

We can extract the hydrodynamic velocity from T**

™=p Vhydro

g

200 400 600 x 200 400 600
» The hydrodynamic velocity is quite close to the domain wall
velocity vy,

> This gets better with increasing ratio of entropies in the two
phases...

» We can fomulate finding vy, as a hydrodynamic problem:

™=p

5\ This leads to the formula:
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How well does this work?

Compare with holographic simulations:
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results for our simulations (left) and of Bea, Mateos et.al. 2104.05708 (right)

13 /22



Domain wall velocities

Key takeaways:

14 / 22



Domain wall velocities

Key takeaways:

1. Movement of a domain wall is accompanied by a hydrodynamic wave

14 / 22



Domain wall velocities

Key takeaways:

1. Movement of a domain wall is accompanied by a hydrodynamic wave

2. The pressure difference is realized on the hydro wave and not on the
domain wall

14 / 22



Domain wall velocities

Key takeaways:

1. Movement of a domain wall is accompanied by a hydrodynamic wave

2. The pressure difference is realized on the hydro wave and not on the
domain wall

3. No need to invoke friction — domain wall velocity expressed in terms
of EOS (perfect fluid hydro)

14 / 22



Domain wall velocities

Key takeaways:

1. Movement of a domain wall is accompanied by a hydrodynamic wave

2. The pressure difference is realized on the hydro wave and not on the
domain wall

3. No need to invoke friction — domain wall velocity expressed in terms
of EOS (perfect fluid hydro)

4. At the domain wall the pressure is approximately p(T¢)
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2. Boost-invariant expansion
and hot remnants
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Boost-invariance and 1% order phase transition

)
\ L 7 et » The plasma undergoes
N - . . . .
— boost-invariant expansion in
\

the longitudinal direction

» The expansion induces
generically cooling and thus
naturally pushes the system
across the phase transition

—
v

. . 1
» A scale invariant plasma cools as T(7) ~ 1/73

» Entropy per unity rapidity is preserved

S o1V, T3~ const

» We would expect the expanding plasma to be more and more
supercooled and transitioning to the other phase through nucleating
more and more bubbles...
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» We study transverse dynamics in a theory with a confinement
deconfinement phase transition
(3D Witten model in a simplified hydro+scalar field description)

> If we start from a deconfined plasma, we expect to eventually arrive
in the confining phase...

» There would be quantum tunnelling which we cannot describe, so we
introduce a “seed” in the initial conditions

blue — deconfined phase red — confined phase
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Interesting: Plasma stuck between two regions of confined phase:

-30 -20 -10 O 10 20 30

The plasma in-between does not seem to want to decay!
We would expect it to be more and more supercooled (T ~ 1/73) X
But it effectively heatsupand T~ T, ~ 1V

It is stable w.r.t. bubble nucleation!

vV v v v
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In our picture, moving domain walls are accompanied by a hydrodynamic
waves with T ~ T, =1...

19 / 22



In our picture, moving domain walls are accompanied by a hydrodynamic

waves with T ~ T, =1...

T

3

20

30

19 / 22



In our picture, moving domain walls are accompanied by a hydrodynamic

waves with T ~ T, =1...

3
2

L

370
360
350
340
330
320

310

300

-30 -20 -10

X O e e e = =

10 20 30
1.05 [N
lr\-lv
I
1.00 NI PN
|
- v
095l |
~— |
~ _‘\\l"!l
0.90

300 310 320 330 340 350 360 370

T




In our picture, moving domain walls are accompanied by a hydrodynamic
waves with T ~ T, =1...
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At later times T is around T, and does not go down despite boost
invariant expansion!
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How is this consistent with boost-invariant expansion?
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How is this consistent with boost-invariant expansion?

~ —

» Recall entropy per unit rapidity
for T(71) .
T3

S o7V, T(7)? ~ const

Vi~
.

» But we can also have entropy conservation with
1
and

T (1) ~ const

» Indeed this holds until the size is of the order of the domain wall

thickness...
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Then, the plasma starts “dissolving” into the confining phase:
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Then, the plasma starts “dissolving” into the confining phase:

This may perhaps be seen as an analog of “hadronization”
(or “glueballization”)??

work in progress...
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Summary

» The dynamics of domain walls at strong coupling is much simpler
than one could expect

» The pressure difference between the phases is not localized in the
vicinity of the domain wall

» ... but within a hydrodynamic wave in the high entropy phase

» This provides a very simple hydrodynamic formula for the domain
wall velocity expressed purely in terms of the equation of state

» We studied phase transition in a boost-invariant setting

» We find evidence for hot remnants of plasma which shrink but do
not become overcooled...
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