Deep learning in modeling lepton-nucleus scattering

Krzysztof M. Graczyk

Institute for Theoretical Physics Neutrino Physics Division NuWro Group

September 12, 2024

Deep learning in modeling lepton-nucleus scattering

K.M.Graczyk

Deep learning and Neutrino-Nucleus Scattering

https://kgraczyk.github.io/laip/

- Al-NuWro: (anti)neutrino-nucleon scattering physics
 - current NuWro team: Jan Sobczyk, Artur Ankowski, Rwik Banerjee, Luis Bonilla, Krzysztof Graczyk, Beata Kowal, Hemant Prasad
- Development of:
 - MC code of NuWr
 - nuclear and hadronic models
 - deep learning techniques for NuWro

イロト イヨト イヨト

 \rightarrow Can we teach neural networks physics?

- neutrinos ν_e , ν_μ , ν_τ ,..., fundamental particles
 - weakly interacting, neutral, difficult to detect...
- neutrino oscillations:

• A huge experimental and theoretical effort in studies of neutrino properties

Deep Underground Neutrino Experiment (DUNE), HyperKamiokande and T2K experiments

イロト イヨト イヨト

- Accelerator neutrinos:
- \rightarrow 1 GeV neutrinos interact with Oxygen (HyperKamiokande), Argon (DUNE),
 - From the precision of the order of 20-30% in the knowledge of ν -nuclei scattering cross sections to the order of percent

$$P(\nu_{\mu} \to \nu_{\tau}) = \sin^2 \theta_{23} \left(\frac{\Delta m_{32}^2 L}{4E_{\nu}} \right)$$

To investigate oscillations, we need to know the energy of incoming neutrinos

 neutrino energy, E_ν, given by some distribution, one must reconstruct energy event-by-event

< ロ > < 同 > < 回 > < 回 >

Neutrino-Nucleon scattering

Neutrino energy reconstructed mainly from the analysis of QuasiElastic (QE) scattering events!

K.M.Graczyk

(人間) とうき くうう

Neutrino-Nucleus Scattering

FIG. 2. MicroBooNE $CC1p0\pi$ differential cross section as

Figs. from Banerjee, Ankowski, Graczyk, Kowal, Prasad, Sobczyk,

Phys.Rev.D 109 (2024) 073004

Deep learning in modeling lepton-nucleus scattering

figs. from J. Sobczyk

- We need to simulate ν -Nucleus in realistic conditions
 - → Monte Carlo Generator of Neutrino Interactions

K.M.Graczyk

NuWro

- Monte Carlo Generator of neutrino interactions, written in C++
- From 2005 (University of Wroclaw, project lead by Jan Sobczyk)
- \bullet Optimized for neutrino energy 1 GeV
- Handle all kinds of targets, and neutrino fluxes, equipped with detector interface
- Output files in ROOT format
- PYTHIA6 used for harmonization and Deep Inelastic Scattering
- open source code, repository: https://github.com/NuWro/nuwro

How to built the MC generator of νA scattering events

figs. T. Golan

• One must combine various theoretical/phenomenological models with different data types in different kinematic regimes and reaction scenarios.

General Problems

- Limited neutrino scattering data
- Limited knowledge of neutrino-nucleus scattering cross sections
- How to transform the knowledge of physics in one kinematic domain to the other where there are no measurements?
- How to transfer a knowledge from electron scattering physics?

Monte Carlo Generator goals

- Obtain the system that automatically and objectively updates its knowledge of physics when new data and new theoretical constraints are delivered
- Obtain the set of methods that allows one to access how the system is uncertain in the predictions

Al-NuWro

11/31

Electrons for Neutrinos

• Similarities between electron and neutrino interactions with nuclear targets

- vector-axial contribution
- the same nuclear physics
- similarities in mechanism for final state interactions ...
- · accurate data in eA scattering
 - \rightarrow test neutrino interactions models
 - \rightarrow transfer nuclear mechanisms knowledge from electron to neutrino scattering physics

QE, dip, RES peaks are clearly distinguished! Not the case in neutrino interactions!

Deep Learning for electron and neutrino scattering physics

- The deep neural network (DNN) can predict electron-nuclei scattering cross sections
 - see achievements of Martini et al. (Phys.Rev.C 107 (2023) 6, 065501), Lovato et al. (2406.06292) and our group (Phys.Rev.C 110 (2024) 2, 025501)
- but can DNN learn basic nuclear properties?
- → Yes it can, but: representational learning and transfer learning

STEP I: Teach deep neural networks nuclear physics

- → Kowal, Graczyk, Ankowski, Banerjee, Prasad, and Sobczyk, Phys.Rev.C 110 (2024) 2, 025501
 - inclusive electron-carbon cross-sections

$$DNN(E, \theta, \omega, \cos\theta, Q^2) \to \frac{d^2\sigma}{d\cos\theta d\omega}$$

- $$\begin{split} E = \mathrm{Energy}, \ \theta = \mathrm{scattering} \ \mathrm{angle}, \ \omega \\ = \mathrm{transfer} \ \mathrm{of} \ \mathrm{energy} \end{split}$$
- 11 independent datasets and 3265 points
- stat., sys. and nor. sys. uncertainties
- a broad kinematic region: quasielastic scattering, pion production, and the onset of deep-inelastic scattering
- we removed the lowest ω data

Data from http://discovery.phys.virginia.edu/research/ groups/qes-archive/notes.html

A □ > < ∃</p>

- $\bullet \ 10$ blocks, each consists of 300 fully connected units and following batch normalization layer
- Batch Normalization (loffe and Szegedy, arxiv:1502.03167)

- We need a model that generalizes well
- $\rightarrow\,$ deep neural networks tend to generalize well
 - * SEE Zhang, et al., arXiv:1611.03530
 - How uncertain are the network's predictions?
 - * Open problem in DL, see Gawlikowski et al., arXiv:2107.03342
- \rightarrow We follow
 - Ensemble methods \rightarrow bootstrap approach (model A)
 - Bayesian methods \rightarrow Variational Inference \rightarrow MC Dropout (model B)

- Efron (1979): bootstrap parametric and non-parametric adapted for neural networks by Tibshirani (1996) and Breiman (1996).
- * Model's prediction = average over the ensemble of models
- ** Augmentation-like technique
- We split the dataset into training and test datasets, with a proportion of 9:1.

Model A and model B

training, test data points NEXT:1 electron - any target cross section model NEXT:2 neutrino - any target cross section model

STEP II: Did neural networks learn nuclear physics? If yes, let us take profit from that

Graczyk, Kowal, Ankowski, Banerjee, Bonilla, Prasad, Sobczyk, arXiv:2408.09936 Electron-nucleus cross sections from transfer learning

Representational learning and Transfer learning

fig from: Deep Learning, Goodfellow, Bengio and Courville

- fundamental concept of deep learning, Bengio, Courville, and Vincent, IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 1798 (2013).
- A graph connecting basic with abstract features
- Transfer learning known in psychology and education. It refers to the ability of a person who has learned skills in one specific field to easily acquire skills needed in related areas of life.
- used in deep learning: DNN, trained on non-medical data, after fine-tuning, is used to detect cancer in medical photos.

イロト イヨト イヨト

Deep learning in modeling lepton-nucleus scattering

K.M.Graczyk

21/31

- Consider electron scattering on lithium, oxygen, aluminium, calcium and iron
- For each target consider its own fine-tuning procedure
- To tests transfer learning minimize as much as possible training dataset:
- \rightarrow training:test = 1:9
 - * Fine-tuning: from 450 to 1,200 epochs compared to 40,000 epochs to train the pre-trained model

rescaled = (A/12) carbon cross section

▲ 同 ▶ → 三

training (10%), test (90%): Iron, all layers fine-tuned

training (10%), test (90%): Iron, two last layers fine-tuned

(人間) とうき くうう

- Transfer learning techniques can help reconstruct the cross sections for processes for which the experimental information is limited, such as electron-argon and neutrino-argon scattering.
- Transfer learning is a universal technique

Backup

rescaled = (A/12) carbon cross section

$$\chi_{\rm tot} = \sum_{k=1}^{11} \left[\chi_k^2(\lambda_k) + \frac{1}{2} \left(\frac{1-\lambda_k}{\Delta \lambda_k} \right)^2 \right], \quad \chi_k^2(\lambda_k) = \frac{1}{2} \sum_{i=1}^{N_k} \left(\frac{d\sigma_k^i - \lambda_k d\sigma_i^{\rm fit}(E_k^i, \theta_k^i)}{\Delta d\sigma_k^i} \right)^2$$

see D'Agostini, NIMPR A 346 (1994) 306

- elastic ep scattering, see e.g. PRC79 (2009) 065204
- C⁵₅-axial form factor and consistency of ANL and BNL data: PRD80 (2009) 093001
- DNN tends to lose proper normalization, Graczyk et al. Self-Normalized Density Map (SNDM) for Counting Microbiological Obejcts, Sci Rep 12, 10583 (2022)

Abbrev.	$\Delta \lambda_k$
Arri1995	4.0%
Arri1998	4.0%
Bagd1988	10.0%
Bara1988	3.7%
Barr1983	2.0%
Dai2018	2.2%
Day1993	3.4%
Fomi2010	4.0%
O'Con1987	5.0%
Seal1989	2.5%
Whit1974	3.0%

• λ_k 's are hyperparameters

イロト イヨト イヨト

On the test data set, dropout $p{=}0.01$

Deep learning in modeling lepton-nucleus scattering

K.M.Graczyk

31/31