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AI-NuWro: (anti)neutrino-nucleon
scattering physics

current NuWro team: Jan Sobczyk,
Artur Ankowski, Rwik Banerjee, Luis
Bonilla, Krzysztof Graczyk, Beata
Kowal, Hemant Prasad

Development of:
MC code of NuWr
nuclear and hadronic models
deep learning techniques for NuWro

→ Can we teach neural networks
physics?
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Neutrino-Matter Interactions

neutrinos νe, νµ, ντ ,..., fundamental particles
weakly interacting, neutral, difficult to detect...

neutrino oscillations:

νµ, ⟨Eν ⟩ ∼ 1 GeV νµ , νe , ντ

L Far Detector

CP -violation phase → the Matter-Antimatter asymmetry
mass hierarchy

A huge experimental and theoretical effort in studies of neutrino properties
Deep Underground Neutrino Experiment (DUNE), HyperKamiokande and T2K
experiments
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Neutrino-Matter Interactions

Accelerator neutrinos:
→ 1 GeV neutrinos interact with Oxygen

(HyperKamiokande), Argon (DUNE),
...
From the precision of the order of
20-30% in the knowledge of ν-nuclei
scattering cross sections to the order
of percent

P (νµ → ντ ) = sin2 θ23

(
∆m2

32L

4Eν

)
To investigate oscillations, we need to
know the energy of incoming neutrinos

neutrino energy, Eν , given by some
distribution, one must reconstruct
energy event-by-event
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Neutrino-Nucleon scattering

fig. from T. Golan
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Neutrino energy reconstructed mainly from the analysis of QuasiElastic (QE)
scattering events!
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Neutrino-Nucleus Scattering

Figs. from Banerjee, Ankowski, Graczyk, Kowal, Prasad, Sobczyk,

Phys.Rev.D 109 (2024) 073004

figs. from J. Sobczyk

We need to simulate ν-Nucleus in
realistic conditions

→ Monte Carlo Generator of
Neutrino Interactions
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NuWro

Monte Carlo Generator of neutrino
interactions, written in C++
From 2005 (University of Wroclaw, project
lead by Jan Sobczyk)
Optimized for neutrino energy 1 GeV
Handle all kinds of targets, and neutrino
fluxes, equipped with detector interface
Output files in ROOT format
PYTHIA6 used for harmonization and Deep
Inelastic Scattering
open source code, repository:
https://github.com/NuWro/nuwro

figs. from T. Golan
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NuWro

fig. from T. Golan
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How to built the MC generator of νA scattering events

figs. T. Golan

One must combine various theoretical/phenomenological models with different
data types in different kinematic regimes and reaction scenarios.
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Problems to solve

General Problems
Limited neutrino scattering data
Limited knowledge of neutrino-nucleus
scattering cross sections
How to transform the knowledge of
physics in one kinematic domain to
the other where there are no
measurements?
How to transfer a knowledge from
electron scattering physics?

Monte Carlo Generator goals
Obtain the system that automatically
and objectively updates its knowledge
of physics when new data and new
theoretical constraints are delivered
Obtain the set of methods that allows
one to access how the system is
uncertain in the predictions
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AI-NuWro

AI-NuWro
lepton-A

cross
sections

e-A
cross

section

ν-A cross
section

Generative
Mechanism

GAN’s
Diffusion
Models

Uncertainty
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GAN for NuWro

Generator
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J. L. Bonilla (Universytet Wrocławski) NuWro GAN June 12, 2024 1 / 1

Sucesfull test for QE, paper in November 24
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Electrons for Neutrinos

Similarities between electron and neutrino interactions with nuclear targets
vector-axial contribution
the same nuclear physics
similarities in mechanism for final state interactions ...
accurate data in eA scattering

→ test neutrino interactions models
→ transfer nuclear mechanisms knowledge from electron to neutrino scattering physics

QE, dip, RES peaks are clearly distinguished! Not the case in neutrino interactions!
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Deep Learning for electron and neutrino scattering physics

The deep neural network (DNN) can predict electron-nuclei scattering cross
sections

see achievements of Martini et al. (Phys.Rev.C 107 (2023) 6, 065501 ), Lovato et al. (2406.06292)
and our group (Phys.Rev.C 110 (2024) 2, 025501)

but can DNN learn basic nuclear properties?
→ Yes it can, but: representational learning and transfer learning

STEP I: Teach deep neural networks nuclear physics
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Teach DNN nuclear physics: electron-carbon scattering

→ Kowal, Graczyk, Ankowski, Banerjee,
Prasad, and Sobczyk, Phys.Rev.C 110
(2024) 2, 025501
inclusive electron-carbon
cross-sections

DNN(E, θ, ω, cos θ, Q2) →
d2σ

d cos θdω

E = Energy, θ = scattering angle, ω
=transfer of energy
11 independent datasets and 3265
points
stat., sys. and nor. sys. uncertainties
a broad kinematic region: quasielastic
scattering, pion production, and the
onset of deep-inelastic scattering
we removed the lowest ω data
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DNN: Model A

hidden layer of units
batch nor. layer

10 blocks, each consists of 300 fully connected units and following batch
normalization layer
Batch Normalization (Ioffe and Szegedy, arxiv:1502.03167)
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Deep Learning

We need a model that generalizes well
→ deep neural networks tend to generalize well
* see Zhang, et al., arXiv:1611.03530

How uncertain are the network’s predictions?
* Open problem in DL, see Gawlikowski et al., arXiv:2107.03342

→ We follow
Ensemble methods → bootstrap approach (model A)
Bayesian methods → Variational Inference → MC Dropout (model B)
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Model A: bootstrap approach

Efron (1979): bootstrap parametric
and non-parametric adapted for neural
networks by Tibshirani (1996) and
Breiman (1996).

* Model’s prediction = average over the
ensemble of models

** Augmentation-like technique
We split the dataset into training and
test datasets, with a proportion of 9:1.
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DNN predictions

training, test data points

Spectral function (QE scattering) vs DNN

Model A and model B

NEXT:1 electron - any target cross section model
NEXT:2 neutrino - any target cross section model
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STEP II: Did neural networks learn nuclear physics?
If yes, let us take profit from that

Graczyk, Kowal, Ankowski, Banerjee, Bonilla, Prasad, Sobczyk, arXiv:2408.09936
Electron-nucleus cross sections from transfer learning
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Representational learning and Transfer learning

fig from: Deep Learning, Goodfellow, Bengio and Courville

fundamental concept of deep
learning, Bengio, Courville,
and Vincent, IEEE
Transactions on Pattern
Analysis and Machine
Intelligence 35, 1798 (2013).
A graph connecting basic
with abstract features
Transfer learning known in
psychology and education. It
refers to the ability of a
person who has learned skills
in one specific field to easily
acquire skills needed in
related areas of life.
used in deep learning: DNN,
trained on non-medical data,
after fine-tuning, is used to
detect cancer in medical
photos.
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Transfer learning

The First Scenario
all layers fine-tuned

The Second Scenario
the last two blocks fine-tuned

Consider electron scattering on lithium, oxygen, aluminium, calcium and iron
For each target consider its own fine-tuning procedure
To tests transfer learning minimize as much as possible training dataset:

→ training:test = 1:9
∗ Fine-tuning: from 450 to 1,200 epochs compared to 40,000 epochs to train the

pre-trained model
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Fine-Tuning: training (10%), test (90%)
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training (10%), test (90%): Oxygen, all layers fine-tuned
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training (10%), test (90%): Iron, all layers fine-tuned

Note that relative normalization parameters (due to nor. sys. uncert.) were taken into
account
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training (10%), test (90%): Iron, two last layers fine-tuned
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Summary

Transfer learning techniques can help reconstruct the cross sections for processes
for which the experimental information is limited, such as electron-argon and
neutrino-argon scattering.
Transfer learning is a universal technique
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Backup
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Transfer learning: Fine-Tuning: training (70%), test (30%)
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Likelihood and Systematic Normalization

χtot =
11∑

k=1

[
χ2

k(λk) +
1
2

(1 − λk

∆λk

)2
]

, χ2
k(λk) =

1
2

Nk∑
i=1

(
dσi

k − λkdσfit
i (Ei

k, θi
k)

∆dσi
k

)2

see D‘Agostini, NIMPR A 346 (1994) 306

elastic ep scattering, see e.g. PRC79 (2009) 065204

CA
5 -axial form factor and consistency of ANL

and BNL data: PRD80 (2009) 093001
DNN tends to lose proper normalization, Graczyk
et al. Self-Normalized Density Map (SNDM) for Counting Microbiological
Obejcts, Sci Rep 12, 10583 (2022)

Abbrev. ∆λk

Arri1995 4.0%
Arri1998 4.0%
Bagd1988 10.0%
Bara1988 3.7%
Barr1983 2.0%
Dai2018 2.2%
Day1993 3.4%
Fomi2010 4.0%
O‘Con1987 5.0%
Seal1989 2.5%
Whit1974 3.0%

λk’s are hyperparameters
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Histograms: Model A, bagging (top) and Model B, MC dropout (bottom)

On the test data set, dropout p=0.01
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