LHC searches beyond simplified models

Krzysztof Rolbiecki

Institute of Theoretical Physics, University of Warsaw

2PiNTS 2024

Kraków, 12.09.2024

Outline

- 1. Introduction
- 2. Simplified models
- 3. Tools for reinterpretation of searches
 - a) MadAnalysis
 - b) SModelS
 - c) CheckMATE
- 4. Examples of reinterpretation studies
- 5. Summary

Outline

1. Introduction

- 2. Simplified models
- 3. Tools for reinterpretation of searches
 a) MadAnalysis
 b) SModelS
 c) CheckMATE
- 4. Examples of reinterpretation studies
- 5. Summary

LHC timeline

Still a long road ahead!

SM in perfect shape

- Hundreds of measurements in excellent agreement with Standard Model predictions
- Several excesses with unclear status

Searches, searches...

March M	odel	s	ignature	e ∫.	<i>Ldt</i> [fb⁻	1]		Mass limit					$\sqrt{s} = 13 \text{ T}$ Reference
ĝą̃, ą̃∙	$\rightarrow q \tilde{\chi}_1^0$	0 e,μ mono-jet	2-6 jets 1-3 jets	E_T^{miss} E_T^{miss}	139 139	q [1×, 8 q [8×D] [8×D] [8×D] [[[× Degen.]		1.0 0.9	1,	35	m($\tilde{\chi}_1^0$)<400 GeV m(\tilde{q})-m($\tilde{\chi}_1^0$)=5 GeV	2010.14293 2102.10874
ĝĝ, ĝ	$\rightarrow q\bar{q}\tilde{\chi}_{1}^{0}$	0 e, µ	2-6 jets	E_T^{miss}	139	ğ ğ	- 01		Forbidder	1.15-1	2.3	m($\tilde{\chi}_{1}^{0}$)=0 GeV m($\tilde{\chi}_{1}^{0}$)=1000 GeV	2010.14293 2010.14293
	$\rightarrow q\bar{q}W\bar{\chi}_1^0$	1 e,μ ee,μμ	2-6 jets 2 jets	E_T^{miss}	139 139	8 2			10101000		2.2	m(x ₁ ⁰)<600 GeV m(x ₁ ⁰)<700 GeV	2101.01629 2204.13072
gg, g ĝĝ, ĝ	$\rightarrow q\bar{q}(\ell \ell)\tilde{\chi}_{1}^{0}$ $\rightarrow qqWZ\tilde{\chi}_{1}^{0}$	0 e,μ SS e,μ	7-11 jets 6 jets	E_T^{miss}	139 139 139	8 Ĩg				1.15	1.97	$m(\tilde{\chi}_1) < 700 \text{ GeV}$ $m(\tilde{\chi}_1^0) < 600 \text{ GeV}$ $m(\tilde{\chi}_1) = 200 \text{ GeV}$	2008.06032 1909.08457
ĝĝ, ĝ	$\rightarrow t \bar{t} \tilde{\chi}_1^0$	0-1 <i>e</i> , μ SS <i>e</i> , μ	3 b 6 jets	$E_T^{\rm miss}$	139 139	ĩg ĩg				1.25	2.45	m($\tilde{\chi}_{1}^{0}$)<500 GeV m($\tilde{\chi}_{1}^{0}$)=300 GeV	2211.08028 1909.08457
$\tilde{b}_1 \tilde{b}_1$		0 <i>e</i> , <i>µ</i>	2 b	$E_T^{\rm miss}$	139	$\tilde{b}_1 \\ \tilde{b}_1$			0.68	1.255		m(μ ⁰ ₁)<400 GeV 10 GeV<Δm(b ₁ ,μ ⁰ ₁)<20 GeV	2101.12527 2101.12527
ο δ ₁ δ ₁ ,	$\tilde{b}_1 \rightarrow b \tilde{\chi}^0_2 \rightarrow b h \tilde{\chi}^0_1$	0 e,μ 2 τ	6 b 2 b	E_T^{miss} E_T^{miss}	139 139	$\tilde{b}_1 \\ \tilde{b}_1$	Forbidden		0.13-0.85	0.23-1.35	Δm(Å Δn	$\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}$ = 130 GeV, m($\tilde{\chi}_{1}^{0}$)= 100 GeV n($\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}$)= 130 GeV, m($\tilde{\chi}_{1}^{0}$)= 0 GeV	1908.03122 2103.08189
	$\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ $\tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$	0-1 e,μ 1 e,μ	≥ 1 jet 3 jets/1 b	E_T^{miss} E_T^{miss}	139 139	\tilde{t}_1 \tilde{t}_1		Forbidden	0.65	1.25		$m(\tilde{\chi}_{1}^{0})=1 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=500 \text{ GeV}$	2004.14060, 2012.03799 2012.03799
	$\tilde{t}_1 \rightarrow \tilde{\tau}_1 bv, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$ $\tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	1-2 τ 0 e,μ	2 jets/1 b	E_T^{miss}	139 36.1	ĩ ₁			Forbidden 0.85	1.4		m(ī)=800 GeV m($\tilde{\chi}_1^0$)=0 GeV	2108.07665 1805.01649
G		0 e, µ	mono-jet	E_T^{fniss}	139	ĩ ₁		0.	55			$m(\tilde{t}_1, \tilde{c}) - m(\tilde{\chi}_1^0) = 5 \text{ GeV}$	2102.10874
$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1, \tilde{t}_2 \tilde{t}_2, \tilde{t}_2$	$\tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0$ $\tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	1-2 e, μ 3 e,μ	1-4 <i>b</i> 1 <i>b</i>	E_T^{miss} E_T^{miss}	139 139			Forbidden	0.067 0.86	-1.18	$m(\tilde{\chi}_1^0)$	$m(\tilde{\chi}_{2}^{0})=500 \text{ GeV}$ =360 GeV, $m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{0})=40 \text{ GeV}$	2006.05880 2006.05880
$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$	via WZ	Multiple <i>ℓ</i> /jet	s ≥1jet	E_T^{miss} E_T^{miss}	139 139	$\begin{array}{c} \tilde{\chi}_1^{\pm}/\tilde{\chi}_2^{0} \\ \tilde{\chi}_1^{\pm}/\tilde{\chi}_2^{0} \end{array}$	0.205		0.96			$m(\tilde{\chi}_{1}^{0})=0$, wino-bino $m(\tilde{\chi}_{1}^{0})-m(\tilde{\chi}_{1}^{0})=5$ GeV, wino-bino	2106.01676, 2108.07586 1911.12606
	via WW	2 e,µ Multiple ℓ/jet		E_T^{miss}	139	$\tilde{\chi}_{1}^{\pm}$	-	0.42				$m(\tilde{\chi}_1^0)=0$, wino-bino	1908.08215
$\tilde{Y}^{\pm}\tilde{Y}^{\mp}$	via Wh via $\tilde{\ell}_L/\tilde{\nu}$	2 e, µ	5	E_T^{miss} E_T^{miss}	139 139	$\frac{\tilde{\chi}_{1}^{\pm}}{\tilde{\chi}_{1}^{\pm}}$	Forbidden		1.0			$m(\tilde{\chi}_1^0)=70$ GeV, wino-bino $m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$	2004.10894, 2108.07586 1908.08215
0 TT, T.		2τ 2e,μ	0 jets	E_T^{miss}	139 139	τ΄ [τ̃ _L , τ̃ 7	R,L] 0.1	16-0.3 0.12-0.39	0.7			$m(\tilde{\chi}_{1}^{0})=0$ $m(\tilde{\chi}_{1}^{0})=0$	1911.06660 1908.08215
	$\tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	ее, µµ 0 е, µ	≥ 1 jet	E_T^{miss} E_T^{miss} E_T^{miss}	139 36.1	ĩ H	0.25	6	0.29-0.88			$m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$ $BR(\tilde{\chi}_1^0 \rightarrow h\tilde{G})=1$	1911.12606 1806.04030
nn,	n→n0/20	4 e,μ 0 e,μ	$\ge 3 b$ 0 jets ≥ 2 large jet:	E_T^{miss}	139 139	Н Н Н	0.13*0.23	0.	0.25-0.88 55 0.45-0.93			$BR(\tilde{\chi}_1^0 \rightarrow Z\tilde{G})=1$ $BR(\tilde{\chi}_1^0 \rightarrow Z\tilde{G})=1$ $BR(\tilde{\chi}_1^0 \rightarrow Z\tilde{G})=1$	2103.11684 2108.07586
		2 e,µ	≥ 2 jets	E_T^{miss}	139	Ĩ			0.77			$BR(\tilde{\ell}_1^0 \rightarrow Z\tilde{G})=BR(\tilde{\ell}_1^0 \rightarrow h\tilde{G})=0.5$	2204.13072
Direc	t $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	$E_T^{\rm miss}$	139	$\frac{\tilde{\chi}_{1}^{\pm}}{\tilde{\chi}_{1}^{\pm}}$	0.21		0.66			Pure Wino Pure higgsino	2201.02472 2201.02472
	le ĝ R-hadron Istable ĝ R-hadron, ĝ→gg∛1	pixel dE/dx pixel dE/dx		E_T^{miss} E_T^{miss}	139 139	\tilde{g} $\tilde{g} = [\tau(\tilde{g}) :$	=10 nel				2.05	$m(\tilde{x}_1^0)=100 \text{ GeV}$	2205.06013 2205.06013
Meta <i>ĨĨ</i> , <i>Ĩ</i> -		Displ. lep		E_T^{miss}	139	ē, μ	-10 113]		0.7		2.2	$\tau(\tilde{\ell}) = 0.1 \text{ ns}$	2011.07812
		pixel dE/dx		$E_T^{\rm miss}$	139	Ť Ť		0.34 0.36				$\tau(\tilde{\ell}) = 0.1 \text{ ns}$ $\tau(\tilde{\ell}) = 10 \text{ ns}$	2011.07812 2205.06013
	$ \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{\pm} \rightarrow Z\ell \rightarrow \ell\ell\ell$ $ \tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell\gamma\gamma$	3 e,μ 4 e,μ	0 jets	E_T^{miss}	139 139		$BR(Z\tau)=1$, $BR(Ze)=$ $\lambda_{c33} \neq 0$, $\lambda_{12k} \neq 0$]	=1]	0.625 1.0	1.55		Pure Wino $m(\tilde{\chi}_1^0)=200 \text{ GeV}$	2011.10543 2103.11684
$\chi_1 \chi_1$ $\tilde{g}\tilde{g}, \tilde{g}$	$\chi_2 \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$ $\rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$ $\rightarrow t\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow tbs$		4-5 large jet		36.1		A _{i33} ≠ 0, A _{12k} ≠ 0])=200 GeV, 1100 G	ieV]	0.95		1.9	m(ℓ_1)=200 GeV Large ℓ_{112}''	1804.03568
<i>tī</i> , <i>t</i> →	$\rightarrow t \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow tbs$ $\rightarrow b \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm} \rightarrow bbs$		Multiple $\ge 4b$		36.1 139	$\tilde{t} = [\lambda''_{323} = 1]$	2e-4, 1e-2]	0. Forbidden	55 1.0 0.95	05		$m(\tilde{\chi}_1^0)=200 \text{ GeV}$, bino-like $m(\tilde{\chi}_1^+)=500 \text{ GeV}$	ATLAS-CONF-2018-003 2010.01015
$\tilde{t}_1 \tilde{t}_1, \tilde{t}$	$\tilde{t}_1 \rightarrow bs$		2 jets + 2 b		36.7	$\tilde{t}_1 = [qq, b]$	s]	0.42	0.61				1710.07171
$\tilde{t}_1\tilde{t}_1, \tilde{t}$	$\tilde{t}_1 \rightarrow q\ell$	2 e,μ 1 μ	2 b DV		36.1 136	$\tilde{t}_1 = \tilde{t}_1 = [10 \cdot 1]$	0< λ' ₂₁₀ <1e-8, 3e-1	10< ∛ _{ru} <3e·9]	1.0	0.4-1.45		$BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$ $BR(\tilde{t}_1 \rightarrow q\mu) = 100\%, \cos\theta_t = 1$	1710.05544 2003.11956
$\tilde{\chi}_1^{\pm}/\tilde{\chi}_1$	${}^{0}_{2}/\tilde{\chi}^{0}_{1}, \tilde{\chi}^{0}_{1,2} \rightarrow tbs, \tilde{\chi}^{+}_{1} \rightarrow bbs$	1-2 e, µ	≥6 jets		139	$\tilde{\chi}_{1}^{0}$		0.2-0.32				Pure higgsino	2106.09609
v a sele	ection of the available ma	ss limits on	new state	sor	1	0-1				1		Mass scale [TeV]	-

More expected at the High Luminosity LHC

Outline

1. Introduction

2. Simplified models

- 3. Tools for reinterpretation of searches
 a) MadAnalysis
 b) SModelS
 c) CheckMATE
- 4. Examples of reinterpretation studies
- 5. Summary

Why simplified models?

- Realistic new physics models tend to involve many new parameters, for example the Minimal Supersymmetric Standard Model ~ 100
- This makes the interpretation and design of searches difficult
- The purpose of simplified models is to reduce the number of parameters: include only a few particles and interactions of a full model with fixed branching fractions

Simplified Models for LHC New Physics Searches

Daniele Alves,¹ Nima Arkani-Hamed,² Sanjay Arora,³ Yang Bai,¹ Matthew Baumgart,⁴ Joshua Berger,⁵ Matthew Buckley,⁶ Bart Butler,¹ Spencer Chang,^{7,8} Hsin-Chia Cheng,⁸ Clifford Cheung,⁹ R. Sekhar Chivukula,¹⁰ Won Sang Cho,¹¹ Randy Cotta,¹ Mariarosaria

D'Alfonso,¹² Sonia El Hedri,¹ Rouven Essig (Editor),^{1, *} Jared A. Evans,⁸ Liam Fitzpatrick,¹³ Patrick Fox,⁶ Roberto Franceschini,¹⁴ Ayres Freitas,¹⁵ James S. Gainer,^{16,17} Yuri Gershtein,³ Richard Gray,³ Thomas Gregoire,¹⁸ Ben Gripaios,¹⁹ Jack Gunion,⁸ Tao Han,²⁰ Andy Haas,¹ Per Hansson,¹ JoAnne Hewett,¹ Dmitry Hits,³ Jay Hubisz,²¹ Eder Izaguirre,¹ Jared Kaplan,¹ Emanuel Katz,¹³ Can Kilic,³ Hyung-Do Kim,²² Ryuichiro Kitano,²³ Sue Ann Koay,¹² Pyungwon Ko,²⁴ David Krohn,²⁵ Eric Kuflik,²⁶ Ian Lewis,²⁰ Mariangela Lisanti (Editor),^{27,†} Tao Liu,¹² Zhen Liu,²⁰ Ran Lu,²⁶ Markus Luty,⁸ Patrick Meade,²⁸ David Morrissey,²⁹ Stephen Mrenna,⁶ Mihoko Nojiri,³⁰ Takemichi Okui,³¹ Sanjay Padhi,³² Michele Papucci,³³ Michael Park,³ Myeonghun Park,³⁴ Maxim Perelstein,⁵ Michael Peskin,¹ Daniel Phalen,⁸ Keith Rehermann,³⁵ Vikram Rentala,³⁶ Tuhin Roy,³⁷

May 2011

13

[hep-ph]

arXiv:1105.2838v1

Joshua T. Ruderman,³⁸ Veronica Sanz,³⁹ Martin Schmaltz,¹³ Stephen Schnetzer,³ Philip Schuster (Editor),^{40, 2, ‡} Pedro Schwaller,^{41, 16, 42} Matthew D. Schwartz,²⁵ Ariel Schwartzman,¹ Jing Shao,⁴³ Jessie Shelton,⁴⁴ David Shih,³ Jing Shu,¹¹ Daniel Silverstein,¹ Elizabeth Simmons,¹⁰ Sunil Somalwar,³ Michael Spannowsky,⁷ Christian Spethmann,¹³ Matthew Strassler,³ Shufang Su,^{45, 36} Tim Tait (Editor),^{36, §} Brooks Thomas,⁴⁶ Scott Thomas,³ Natalia Toro (Editor),^{40, 2, ¶} Tomer Volansky,⁹ Jay Wacker (Editor),^{1, **} Wolfgang Waltenberger,⁴⁷ Itay Yavin,⁴⁸ Felix Yu,³⁶ Yue Zhao,³ and Kathryn Zurek²⁶

(LHC New Physics Working Group)

 ¹SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA ²Institute for Advanced Study, Princeton, New Jersey 08540, USA
 ³Dept. of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA
 ⁴Johns Hopkins University, Dept. of Physics and Astronomy, Baltimore, MD 21218, USA ⁵LEPP, Cornell University, Ithaca, NY 14853, USA
 ⁶Fermi National Accelerator Lab., Theory Group, Batavia, IL 60510, USA ⁷University of Oregon, Department of Physics, Eugene, OR 97403-1274 USA ⁸University of California Davis, Department of Physics, Davis, CA 95616-8677, USA ⁹Department of Physics, UC Berkeley, Berkeley CA, 94720, USA
 ¹⁰Dept. of Physics and Astronomy, Michigan State University Labasing, MI 48824, USA ¹¹IPMU. The University of Tokyo. Chiba. 277-8583. Japan

Benchmark MSSM example

Example: supersymmetry

Example: gluino simplified models – jets+MET

More gluino models – jets+leptons+MET

Dark matter searches – colliders vs DD

15

The purpose of simplified models

A simplified model is specifically designed to involve only a few new particles and interactions. They are limits of more general new physics scenarios, where all but a few particles are integrated out.

- Identifying the boundaries of search sensitivity: one- and two-dimensional slices within a simplified model can illustrate these boundaries very clearly and help to identify kinematic ranges
- Characterizing new physics signals: simplified models can be a starting point for identification of observed signal with different realistic models
- Deriving limits on more general models: the initial assessment within a simplified model should be followed by a dedicated recasting study

Simplified model summary

- Simplified models cover a small and often unrealistic part of the models and parameters landscape
- Simplified models provide an easy parametrization in terms of just a few parameters e.g., 2-3 masses, perhaps a branching fraction (but often 100%)
- Hundreds of searches for supersymmetry but other models used to be less popular (this is changing though)
- Provide a clear link in terms of limits between particular topologies and final states e.g.: jets + MET, jets + lepton + MET, jets + lepton...
- Simplified models were never meant as a final word in searches for TeVscale physics
- Allows for confrontation with other detection methods
- A quick way of recasting searches optimized for simplified models is essential in the quest for new physics

Outline

1. Introduction

2. Simplified models

3. Tools for reinterpretation of searches a) MadAnalysis b) SModelS c) CheckMATE

- 4. Examples of reinterpretation studies
- 5. Summary

Monte Carlo tools & discoveries at the LHC

Searches for new TeV-scale physics still one of the main goals in the coming years

- Theoretical model building offers a vast number of models with particles in the LHC reach
- Experimental papers cover only a small fraction of existing models
- We need tools to cover the gap and: assess viability of models, guide future searches, looking for blind spots
- Computer tools are essential: Monte Carlo generators, fast detector simulators, cross section calculators
- We need tools to analyze MC output easily and compare it quickly and reliably with existing experimental exclusions

This is the main purpose of recasting tools

Reinterpretation/recasting in a nutshell

20

LHC Reinterpretation Forum

The purpose of the <u>RIF</u> is to discuss topics related to the BSM (re)interpretation of LHC data, including the development of the necessary public recasting tools and related infrastructure, and to provide a platform for a continued interaction between theorists and with the experiments. The recent topics:

- the publication and reuse of statistical models
- the reinterpretation of analyses that employ machine learning
- global analyses and global fits
- preservation of data and methods for replication/reanalysis in future: for a once in a lifetime experiment we want to make sure all the necessary information is provided and understandable for people outside of a particular analysis

(Re)interpretation of the LHC results for new physics

Dec 12 – 15, 2022 CERN Europe/Paris timezone

Enter your search term

Q

Overview

Timetable

Participant List

172 participants

https://indico.cern.ch/event/1197680/

SModelS

- An automatic tool for interpreting simplified-model results from the LHC
- It is based on a general procedure to decompose Beyond the Standard Model (BSM) collider signatures presenting a Z₂-like symmetry into Simplified Model Spectrum (SMS) topologies
- <u>https://smodels.readthedocs.io/</u>

SModelS

Based on a database of efficiencies either ¹⁰⁰ obtained directly from experimental collaboration or recasted (also using other tools like MadAnalysis or CheckMATE)

m(X_1)

- Covers models which have SUSY-like topologies
- Less versatile than MadAnalysis or CheckMATE but significantly faster
- Uses efficiency maps or upper limits for specific topologies
- **New:** combination of searches/experiments

SModelS coverage

Run 2 - 13 TeV:

- In total, we have results from 35 ATLAS and 39 CMS 13 TeV searches.
- ATLAS upper limits: 32 analyses, 80 (of which 4 LLP) results
- ATLAS efficiency maps: 21 analyses, 65 (of which 11 LLP) results, 599 individual maps
- CMS upper limits: 36 analyses, 143 (of which 3 LLP) results
- <u>CMS efficiency maps</u>: 8 analyses, 53 results, 3186 individual maps

Run 1 - 8 TeV:

- In total, we have results from 15 ATLAS and 18 CMS 8 TeV searches.
- ATLAS upper limits: 13 analyses, 34 results
- ATLAS efficiency maps: 10 analyses, 31 results, 269 individual maps
- CMS upper limits: 16 analyses, 56 (of which 3 LLP) results
- <u>CMS efficiency maps</u>: 9 analyses, 47 (of which 9 LLP) results, 980 individual maps

MadAnalysis 5

- High level of integration with Monte Carlo generator MadGraph5
- A Python and C++ based framework for phenomenological analyses
- Any level of sophistication: partonic, hadronic, detector, reconstructed
- Several input format: STDHEP, HEPMC, LHE, LHEO, ROOT (from Delphes)
- Interfaces to other HEP packages (fast detector simulation, jet clustering etc.)
- Two modules
 - 1) Python command line interface (interactive)
 - 2) C++ core module, SampleAnalyzer
- https://launchpad.net/madanalysis5

MadAnalysis: Public Analysis Data Base

ATLAS analyses, 13 TeV

Analysis	Short Description	Implemented by	Code	Validation note	Version
G→ATLAS-SUSY-2015-06	Multijet + missing transverse momentum (3.2 fb-1)	S. Banerjee, B. Fuks, B. Zaldivar	⇔MA5 dataverse	G→PDF	v1.3/Delphes3
⇔ATLAS-SUSY-2016-07	Multijet + missing transverse momentum (36.1 fb-1)	G. Chalons, H. Reyes-Gonzalez J.Y. Araz		⇒ PDF ⇒ Pythia files ⇒ Sec. 5.2 in 2006.09387	v1.7/Delphes3 v1.8/SFS
G→ATLAS-SUSY-2017-04	Displaced vertices with opposite-charge lepton pairs (32.8 fb-1)	M. Utsch, M. Goodsell	⇒MA5 dataverse	G→ Sec. 4 in 2112.05163	v1.9/SFS
G→ATLAS-SUSY-2018-04	Staus in the ditau + met channel (139 fb-1)	J. Lim, CT. Lu, JH. Park, J. Park	⇒MA5 dataverse	G→PDF	v1.8/Delphes3
⇒ATLAS-SUSY-2018-06	Electroweakinos with Jigsaw variables (139 fb-1)	J.H. Kim, T.G. Lee, J.W. Kim, H. Jang	⇒MA5 dataverse	G→PDF	v1.8/Delphes3
G→ATLAS-SUSY-2018-17	At least 8 jets + met (139 fb-1)	T. Murphy	G→MA5 dataverse	G→PDF	v1.9/Delphes3
⇒ATLAS-SUSY-2018-31	Sbottoms in the multibottom (including Higgs decays) + met channel (139 fb-1)	J.Y. Araz, B. Fuks	⇒MA5 dataverse	G→PDF	v1.9/SFS
⇒ATLAS-SUSY-2018-32	Electroweakinos/sleptons in the 2I + met channel (139 fb-1)	J.Y. Araz, B. Fuks	⇒MA5 dataverse	G⇒PDF	v1.8/Delphes3
G→ATLAS-SUSY-2019-08	H (into b bbar) + 1 lepton + missing transverse momentum (139 fb-1)	M. Goodsell	⇒MA5 dataverse	⇔PDF	v1.8/Delphes3
⇒ATLAS-EXOT-2015-03	Monojet (3.2 fb-1)	D. Sengupta	⇒MA5 dataverse	G⇒PDF	v1.3/Delphes3
G→ATLAS-EXOT-2016-25	Mono-Higgs (36.1 fb-1)	S. Jeon, Y. Kang, G. Lee, C. Yu	⇒MA5 dataverse	G⇒PDF	v1.6/Delphes3
⇒ATLAS-EXOT-2016-27	Monojet (36.2 fb-1)	D. Sengupta	⇒MA5 dataverse	G→PDF	v1.6/Delphes3
⇒ATLAS-EXOT-2016-32	Monophoton (36.1 fb-1)	S. Baek, T.H. Jung	⇒MA5 dataverse	G⇒PDF	v1.6/Delphes3
G→ATLAS-EXOT-2018-05	Di-jet resonance in association with a photon (78.6 fb-1)	H. Bahl	⇒MA5 dataverse	G→ App. A in 2109.10366	v1.9/SFS
⇒ATLAS-EXOT-2018-30	W' into lepton+neutrino (139 fb-1)	K. Park, S. Lee, W. Jun, U. Min	⇒MA5 dataverse	G→PDF	v1.8/Delphes3
⇒ATLAS-CONF-2016-086	b-pair + missing transverse momentum (13.3 fb-1)	B. Fuks & M. Zumbihl	G→MA5 dataverse	G→PDF	v1.6/Delphes3
G→ATLAS-CONF-2019-040	Jets + missing transverse momentum (139 fb-1)	F. Ambrogi J.Y. Araz	⇔ MA5 dataverse ⇔ MA5 dataverse		v1.8/Delphes3 v1.8/SFS
ATLAS-CONF-2020-002	At least 8 jets + missing transverse momentum (139 fb-1)	T. Murphy	↔ MA5 dataverse	G→PDF	v1.9/Delphes3

All detector parametrisations can be obtained from the MA5 dataverse links, together with the corresponding analysis codes.

CMS analyses, 13 TeV

Analysis	Short Description	Implemented by	Code	Validation note	Version
□ CMS-SUS-16-033	Supersymmetry in the multijet plus missing energy channel (35.9 fb-1)	F. Ambrogi and J. Sonneveld	G→MA5 dataverse	G⇒PDF	v1.7/Delphes3
⇒ CMS-SUS-16-039	Electroweakinos in the SS2L, 3L and 4L channels (35.9 fb-1)	B. Fuks and S. Mondal	G→MA5 dataverse	G⇒PDF	v1.7/Delphes3
CMS-SUS-16-048	Compressed electroweakinos with soft leptons (35.9 fb-1)	B. Fuks J.Y. Araz		G⇒ Sec. 19 in 2002.12220 G⇒ Sec. 5.3 in 2006.09387	v1.8/Delphes3 v1.8/SFS
⇔CMS-SUS-16-052	SUSY in the 1I + jets channel (36 fb-1)	D. Sengupta	G→MA5 dataverse	G→PDF	v1.6/Delphes3
G→ CMS-SUS-17-001	Stops in the OS dilepton mode (35.9 fb-1)	SM. Choi, S. Jeong, DW. Kang et al.	G→ MA5 dataverse	G→ PDF	v1.6/Delphes3
⇒ CMS-SUS-19-006	SUSY in the HT/missing HT channel (137 fb-1)	M. Mrowietz, S. Bein, J. Sonneveld	G→MA5 dataverse	G→PDF	v1.8/Delphes3
G→CMS-B2G-17-014	Vector-like quarks with charge 5/3 with same-sign dileptons (35.9/fb)	J. Salko, L. Panizzi	G→MA5 dataverse	G→ App. A in 2107.07426	v1.9/Delphes3
⇒ CMS-EXO-16-010	Mono-Z-boson (2.3 fb-1)	B. Fuks	G→MA5 dataverse	G→PDF	v1.6/Delphes3
G→CMS-EXO-16-012	Mono-Higgs (2.3 fb-1)	S. Ahn, J. Park, W. Zhang	G→MA5 dataverse	G⇒PDF	v1.6/Delphes3
G→ CMS-EXO-16-022	Long-lived leptons (2.6 fb-1)	J. Chang M. Ustch, M. Goodsell	G→ MA5 dataverse G→ MA5 dataverse	G⇒ PDF G⇒ Sec. 3 in 2112.05163	v1.7/Delphes3 v1.9/SFS
→ CMS-EXO-17-009	Leptoquark pair production in the electron(s)+jets channel (35.9 fb-1)	T. Murphy	G→MA5 dataverse	G→PDF	v1.10/Delphes3
⇒CMS-EXO-17-011	WR and heavy neutrino in the 2l2j mode (35.9 fb-1)	A. Jueid, B. Fuks	G→MA5 dataverse	TBA	v2.0.4/SFS
⇒ CMS-EXO-17-015	Leptoquarks + dark matter in the 1mu+1jet+met channel (77.4 fb-1)	A. Jueid and B. Fuks	G→MA5 dataverse	G⇒PDF	v1.8/Delphes3
G→CMS-EXO-17-030	Pairs of trijet resonances (35.9 fb-1)	Y. Kang, J. Kim, J. Choi, S. Yun	G→MA5 dataverse	G→PDF	v1.8/Delphes3
⇒ CMS-EXO-19-002	Type-III seesaw and top-philic scalars with multileptons (137/fb)	E. Conte, R. Ducrocq	G→MA5 dataverse	G→PDF	v1.9/Delphes3
⇒ CMS-EXO-19-010	CMS disappearing tracks (139/fb)	M. Goodsell	G→MA5 dataverse	G→ Sec. 5 in 2112.05163	v1.9/SFS
G→CMS-EXO-20-002	WR and heavy neutrino in the 2l2j mode (138 fb-1)	A. Jueid, B. Fuks	G→MA5 dataverse	TBA	v2.0.4/SFS
G→CMS-EXO-20-004	Dark matter in the multi-jet+met channel (137 fb-1)	A. Albert	G→MA5 dataverse	G→ App. B.5 in 2107.13021	v1.9/Delphes3
G CMS-HIG-18-011	Exotic Higgs decay in the 2 muons + 2 b-jet channel via 2 pseudoscalars (35.9 fb-1)	J.B. Lee and J. Lee	G→MA5 dataverse	G⇒PDF	v1.8/Delphes3
⇒CMS-TOP-17-009	SM four-top analysis (35.9 fb-1)	L. Darmé and B. Fuks	G→MA5 dataverse	G→PDF	v1.7/Delphes3
⇒ CMS-TOP-18-003	SM four-top analysis (137 fb-1)	L. Darmé and B. Fuks	⇒MA5 dataverse	G→ PDF	v1.8/Delphes3

Anyone can contribute

All detector parametrisations can be obtained from the MA5 dataverse links, together with the corresponding analysis codes

Current Members: Manimala Chakraborti, Nishita Desai, Florian Domingo, Jong Soo Kim, Krzysztof Rolbiecki, Roberto Ruiz de Austri, Ipsita Saha, Liangliang Shang, Mangesh Sonawane, Zeren Simon Wang, Yuanfang Yue

Former Members: Daniel Dercks, Manuel Drees, Herbert Dreiner, Frederic Ponzca, Jamie Tattersall, Thorsten Weber

- CheckMATE is a general tool for recasting arbitrary model
- Accepts events as .hepmc, .lhe; integration with Pythia and MadGraph
- based on Delphes for detector simulation
- using existing LHC searches calculates a limit on a given parameter point
- From SLHA file to the limit in one click
- one can easily constrain models that were not covered in the original ATLAS/CMS search
- currently more than 40 searches at 13 TeV coded, including 14 with full luminosity
- long-lived particles branch
- <u>https://checkmate.hepforge.org/</u> and <u>https://github.com/CheckMATE2/checkmate2</u>

Particle detector in a nutshell

Detector simulation

Delphes 3.4 / 3.5

- Simulates tracking and energy deposition
- Applies efficiencies for photons and leptons
- Clusters jets
- Performs energy/momentum smearing of all reconstructed objects
- Evaluates total missing energy
- Checks isolation conditions for photons and leptons
- Applies b-/ tau-tag on jets

CheckMATE improvements

- Added identification and isolation flags
- Tuned to reproduce LHC detectors:
 - ATLAS for 13 TeV Run; updates in progress
 - CMS work in progress

CheckMATE: ATLAS analyses

#Name	NSR	Description	Lumi
atlas 1604 01306	1	photon + MET search at 13 TeV	3.2
atlas 1605 09318	8	>= 3 b-jets + 0-1 lepton + Etmiss	3.3
atlas 1609 01599	9	ttV cross section measurement at 13 TeV	3.2
atlas 1704 03848	5	monophoton dark matter search	36.1
atlas conf 2015 082	1	leptonic Z + jets + Etmiss	3.2
atlas conf 2016 013	10	<pre>4 top quark (1 lepton + jets, vector like quark search)</pre>	3.2
atlas conf 2016 050	5	1-lepton + jets + etmiss (stop)	13.3
atlas conf 2016 054	10	1-lepton + jets + etmiss (squarks and gluino)	14.8
atlas conf 2016 076	6	2 leptons + jets + etmiss	13.3
atlas conf 2016 096	8	2-3 leptons + etmiss (electroweakino)	13.3
atlas_conf_2017_060	20	monojet search	36.1
atlas conf 2016 066	2	search for photons, jets and met	13.3
atlas_1712_08119	39	electroweakinos search with soft leptons	36.1
atlas 1712 02332	24	squarks and gluinos, 0 lepton, 2-6 jets	36.1
atlas_1709_04183	14	stop pair production, 0 leptons	36.1
atlas_1802_03158	7	search for GMSB with photons	36.1
atlas_1708_07875	2	electroweakino search with taus and MET	36.1
atlas_1706_03731	19	same-sign or 3 leptons RPC and RPV SUSY	36.1
#atlas_conf_2019_018	2	Search for direct stau production in events with two hadronic tau leptons	139
atlas_1908_08215	16	charginos/sleptons, 2 leptons + MET	139
atlas_1909_08457	5	search for squarks and gluinos with same-sign leptons	139
atlas_conf_2019_020	2	Search for chargino-neutralino production with mass splittings near the electroweak scale	139
atlas_1803_02762	20	Search for electroweakino production in final states with two or three leptons»	36.1
atlas_2101_01629	32	squarks/gluinos, 1 lepton, jets, MET	139
atlas_conf_2020_048	26	Search for dark matter with monojets	139
atlas_2004_14060	9	stops, leptoquarks, 0 lepton	139
atlas_1908_03122	10	0 leptons, 3 or more b-jets, sbottoms	139
atlas_1911_12606	87	search for sleptons and electroweakinos with soft leptons	139
atlas_1807_07447	633	general search for new phenomena	3.2
atlas_2103_11684	2	Search for SUSY in events with four or more leptons (gravitino SR)	139
atlas_2004_10894	12	EWino search in Higgs (diphoton) and met	139
atlas_2106_09609	21	Search for RPV SUSY in final states with leptons and many jets	139
atlas_1911_06660	2	search for direct stau production	139
atlas_2010_14293	78	search for squarks and gluinos in MET_jet final states	139
atlas_2211_08028	22	search for gluinos decaying via 3rd gen; multi b-jets and MET	139

31

CheckMATE: CMS analyses

#Name	NSR	Description	Lumi
cms pas sus 15 011	47	CMS, 13 TeV, 2 leptons + jets + MET	2.2
cms_sus_16_039_	158	electrowekinos in multilepton final state	35.9
cms_sus_16_025	14	electroweakino and stop compressed spectra	12.9
cms_sus_16_048	20	two soft opposite sign leptons	35.9
cms_sus_19_005		hadronic final states with MT2	137.0

The list much shorter compared to ATLAS...

- From start CheckMATE was based on collaboration with ATLAS so the ties are still stronger
- ATLAS is by default releasing reinterpretation material for all SUSY searches: cutflows, simplified analysis code, efficiencies etc., what makes recasting much easier
- Many searches very similar (on the other hand combinations are tempting...)

Note on validation

- How do we check the implementation is correct?
- First assessment: cutflows

	Selection			$\begin{vmatrix} m_{\tilde{q}} = 14 \\ m_{\tilde{\chi}_1^0} = 6 \end{vmatrix}$		$ \begin{vmatrix} m_{\tilde{q}} = 1600 \text{ GeV} \\ m_{\tilde{\chi}_1^0} = 400 \text{ GeV} \end{vmatrix} $	
		ATLAS	CM	ATLAS	CM	ATLAS	CM
Generated MC	Generated MC events		10000	6000	10000	6000	10000
Common Requirements	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$	$1763 \\ 1763 \\ 1746$	1780 1780 -	$541 \\ 541 \\ 535$	$546 \\ 546 \\ -$	$174 \\ 174 \\ 173$	176 176 —
SR-2j-1600	$ \begin{vmatrix} \Delta \phi(j_{1,2,(3)}, E_{\rm T}^{\rm miss}) > 0.8 \\ \Delta \phi(j_{i>3}, E_{\rm T}^{\rm miss}) > 0.4 \\ p_T(j_2) > 250 \text{ GeV} \\ \eta(j_{1,2}) < 2.0 \\ E_{\rm T}^{\rm miss}/\sqrt{H_T} > 16 \text{ GeV}^{1/2} \\ m_{\rm eff}({\rm incl.}) > 1600 \text{ GeV} \end{vmatrix} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c } 1434 \\ 1353 \\ 850 \\ 832 \\ 554 \\ 362 \\ \end{array} $	$ \begin{array}{c c} 431 \\ 411 \\ 311 \\ 306 \\ 228 \\ 202 \\ \end{array} $	$\begin{array}{c} 433 \\ 410 \\ 310 \\ 305 \\ 227 \\ 195 \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	139 130 112 110 87.3 84.2

Validation: reproducing exclusion contours

Figure 1: A Comparison of the exclusion limits on the Displaced Lepton search provided by CMS with those obtained from CheckMATE (left: 8 TeV, 19.7 fb⁻¹; right: 13 TeV, 2.6 fb⁻¹).

Validation: reproducing exclusion contours

Figure 2: Validation of the DV+MET search in the scenario with large mass-splitting for two different benchmarks (left $m_{\tilde{q}} = 1.4$ TeV, right: $m_{\tilde{q}} = 2$ TeV.). The bottom panel in both cases shows the

Outline

- 1. Introduction
- 2. Simplified models
- 3. Tools for reinterpretation of searches

 a) MadAnalysis
 b) SModelS
 c) CheckMATE
- 4. Examples of reinterpretation studies
- 5. Summary

Light SUSY dark matter

- bino-wino: almost mass degenerate winos and bino LSP
- $\tilde{\chi}_2^0, \tilde{\chi}_1^+$ Z^* W^* $\tilde{\chi}_1^0$ bino-wino

• wino LSP: $M_2 \ll M_1, \mu$, two quasi-degenerate states: χ_1^0, χ_1^{\pm}

- higgsino LSP, $\mu \ll M_1, M_2$, three quasi-degenerate states: $\tilde{\chi}_1^0, \tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0$
- mass splittings of order 100–1000 MeV

Search strategies

- for sufficiently small mass gap a long-lived massive particle travels macroscopic distance in the detector
- possible signatures: displaced vertex, heavy charged track, displaced jet etc.
- for a larger mass difference (> 1 GeV) look for soft decay products
- at HL the gap remains
- for winos no exclusion in soft ℓ search!

Results: higgsinos

- higgsino model
- $pp \to \widetilde{H}^{\pm} \widetilde{H}^0_{1,2}, \widetilde{H}^+ \widetilde{H}^-, \widetilde{H}^0_1 \widetilde{H}^0_2$
- $\bullet \ \widetilde{H}^{\pm} \to \widetilde{H}^0_1 W^*, \widetilde{H}^0_2 \to \widetilde{H}^0_1 Z^*$
- currently the limit only slightly above LEP
- after Run 3 the expected limit increases to 130 GeV

Results: winos

- $\widetilde{W}^{\pm} \to \widetilde{W}^0 W^*$
- \widetilde{W}^0 stable (DM candidate)
- soft decay products but no same-flavour opposite-charge from Z* and no limits
- the limits from LEP and the search for semi-stable chargino
- the new exclusion on top of LEP and long-lived charged wino limits
- after Run 3 the expected limit increases to 200 GeV

Neglected gaugino-squark production

- light gauginos and squark, rest of the spectrum decoupled
- we consider associated squark-wino production
- $pp \to \tilde{\chi}\tilde{q}, \ \tilde{q} \to \tilde{\chi}q$
- monojet-type signal
- specifically sensitive to 1st generation doublet
- order $\alpha \alpha_s$ compared to α_s^2 for squark pair production, so maybe can be neglected?

Gaugino-squark production

- three possibilities: $\widetilde{\chi} =$ wino, bino, higgsino
- $pp \to \widetilde{W}\widetilde{q}, \ \widetilde{q} \to \widetilde{W}q$
- at squark mass ~ 1 TeV the cross section competitive with squark pair production $(m_{\widetilde{W}} = 200 \text{ GeV})$

•
$$pp \to \widetilde{B}\widetilde{q}, \ \widetilde{q} \to \widetilde{B}q$$

• at squark mass ~ 2.2 TeV the cross section competitive with squark pair production $(m_{\widetilde{B}} = 100 \text{ GeV})$

higgsino production negligible
 Yukawa suppressed

Gaugino-squark production

Significant enhancement of exclusion limits!

first generation doublet only (2-fold degenerate) 2 generations, left and right (8-fold degenerate)

43

Minimal Universal Extra Dimensions

- MUED is a viable TeV-scale extension of the SM
- Generally, particle content similar to MSSM but different spins and rather compressed spectrum
- No dedicated searches, but recasting SUSY gives non-trivial constraints
- From this analysis one concludes that in the allowed parameter range DM relic density too high

Outline

- 1. Introduction
- 2. Simplified models
- 3. Tools for reinterpretation of searches
 - a) MadAnalysis
 - b) SModelS
 - c) CheckMATE
- 4. Examples of reinterpretation studies
- 5. Summary

Summary

- Simplified models are a useful tool but just a first step in the exploration of TeV-scale physics
- Several codes on the market to facilitate translation of the simplified model limits to realistic physics models:
 - MadAnalysis
 - SModelS
 - Gambit/ColliderBit
 - CheckMATE
- Codes widely used for studies (several hundred citations each), constantly developing with new features and analysis sophistication

Norway grants

The research leading to the results presented in this talk has received funding from the Norwegian Financial Mechanism for years 2014-2021, grant nr 2019/34/H/ST2/00707

Understanding the Early Universe: interplay of theory and collider experiments

Joint research project between the University of Warsaw & University of Bergen

Minimal running example

- Step 1: Decide on a parameter point benchmark1.slha
- Step 2: Set up parameters param.dat
- Step 3: Run ./CheckMATE
- Wait.

[Parameters] SLHAFile: /scratch/benchmark1.slha

```
[squ_asq]
Pythia8Process: p p > sq sq~
MaxEvents: 1000
```

Result: Allowed Result for r: r_max = 0.74 SR: atlas_conf_2013_047 - ET

or

Result: Excluded Result for r: r_max = 1.33 SR: atlas_conf_2013_047 - A