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Motivation

Standard Model Physics beyond SM must exist

very successful theory
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w===Visible Standard

68,3%
Dark energy

European Strategy for Particle Physics
“Europe's top priority should be the exploitation of the full potential of the LHC"
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Motivation - Monte Carlo Event Generators (MCEQ)

Standard Model

There is a huge gap between a one-line formula of a fundamental theory, like

the Lagrangian of the SM, and the experimental reality that it implies

Theory
Standard Model Lagrangian

o

R P
- ‘-F,B)L +he
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Experiment
LHC event

Data makes you smarter

It doesn't matter how
beautiful your theory is,
it doesn't matter how
smart you are. If it
doesn't agree with
experiment, it's wrong.

Richard P. Feynman
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Motivation - Monte Carlo Event Generators (MCEQ)
Standard Model

There is a huge gap between a one-line formula of a fundamental theory, like

the Lagrangian of the SM, and the experimental reality that it implies

Theory Experiment
Standard Model Lagrangian LHC event

-

e MC event generators are designed to bridge the that gap
e “Virtual collider” = Direct comparison with data

U

Almost all HEP measurements and discoveries in the modern era have relied on MCEG, most
notably the discovery of the Higgs boson.

_ Published papers by ATLAS, CMS, LHCb: 2252
(Herwig and Sherpa)@U3J, Pythia Citing at least 1 of 3 existing MCEG: 1888 (84%)
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Quantum chromodynamics (QCD)

QCD correctly describes strong interactions in each energy range but it is very
difficult to obtain precise predictions

High energy Low energy .
e perturbative QCD e non-perturbative QCD
e we have theoretical models e we lack solid theoretical models

e but they are hard to use in practice ® so0 we use phenomenological models
(with many free parameters)

Stefan Gieseke ™
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Quantum chromodynamics (QCD)

QCD correctly describes strong interactions in each energy range but it is very
difficult to obtain precise predictions

High energy Low energy .
e perturbative QCD e non-perturbative QCD
e we have theoretical models e we lack solid theoretical models

e but they are hard to use in practice ® so0 we use phenomenological models
(with many free parameters)

Imagine that the BSM physics signal is at the LHC but due to lack of QCD understanding we missed it

We need: SIMPLIFICATIONS in NEW IDEAS of treatment
perturbative QCD techniques non-perturbative QCD

[KrkNLO matching]
QCD ex-Machina

‘NARODOWE
CENTRUM
ANNAUKI

NCN: 2019/34/E/ST2/00457
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Hadronization

Hadronization:
one of the least understood elements of MCEG
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Motivation - Hadronization

Hadronization:

-> Increased control of perturbative corrections = more often LHC measurements are

limited by non-perturbative components, such as hadronization.
- W mass measurement using a new method [Freytsis at al. JHEP 1902 (2019) 003]

Extraction of the strong coupling in [M. Johnson, D. Maitre, Phys.Rev. D97 (2018) no.5]
Top mass [S. Argyropoulos, T. Sjostrand, JHEP 1411 (2014) 043]

/STRING Hadronization \ CLUSTER Hadronization \
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Hadronization models

Hadronization:
~ Early1980’s Early 2020's
(limited progress) (lot of progress in ML)
/ STRING Hadronization ] \ / CLUSTER Hadronization ] \
\ - = =

) | 4

N4
ML

Idea of using Machine Learning (ML) for hadronization.
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Motivation for Machine learning hadronization

Idea of using Machine Learning (ML) for hadronization.

e Existing hadronization models are highly parameterized functions.

e Hadronization is a fitting problem

ML

- Can ML hadronization be more flexible to fit the data?

- Can ML hadronization extract more information from the data?
[can accommodate unbinned and high-dimensional inputs]

NINPDF

NNPDF used successfully ML to nonperturbative Parton Density Functions (PDF).

Hadronization is closely related to fragmentation functions (FF) which were considered the

counterpart of PDFs. gg luminosity

Vs =14 TeV
1.25+

71 MSHT20 (68% c.l.)
1.20 X CT18' (68% c.l.)
1.15 - 1 NNPDF3.1' (68% c.l.)
S
T 1.10 1
g
o 1.05
2 1.001
©
o
0.95
0.90 Higgs physics
0.85 ’ T 1
10! ! 107 l(:)3
m my (GeV) New physics
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Recent progress: Machine learning hadronization

First steps for ML hadronization:

HADML - [A. Ghosh, Xi. Ju, B. Nachman AS, Phys.Rev.D 106 (2022) 9]

MLhad - [P. llten, T. Menzo, A. Youssef and J. Zupan, SciPost Phys. 14, 027 (2023)]

MLhad

HADML

Deep generative
model:

Variational Autoencoder

Generative Adversarial
Networks

Trained on:

String model

Cluster model

Recent progress:

“Reweighting Monte Carlo
Predictions and Automated
Fragmentation Variations in
Pythia 8"

[Bierlich, llten, Menzo, Mrenna,
Szewc, Wilkinson, Youssef,
Zupan, 2308.13459]

“Fitting a Deep
Generative
Hadronization Model”

[J. Chan, X. Ju, A. Kania, B.
Nachman, V. Sangli and
AS, JHEP 09 (2023) 084]
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What is a deep generative model?

A generator is nothing other than a function
that maps random numbers to structure.

Deep generative models: the map is a deep neural network.
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Our tool of choice: GANs

[Goodfellow et al. “Generative adversarial nets”. arxiv:1406.2661]

Generative Adversarial Networks (GANS):
A two-network game where one maps noise to structure
and one classifies images as fake or real.
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When D is maximally
confused, G will be
a good generator
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Adversarial Networks

Arthur Lee Samuel (1959) wrote a program that learnt to play checkers well enough to beat him.

97
I/l/l%
/I/I%I/
,/l/l/l/
%-/-%-%Q
Q7. 7 7
/l/@%l/

7 7 707

He popularized the term "machine learning" in 1959.

The program chose its move based on a minimax strategy, meaning it made the move assuming
that the opponent was trying to optimize the value of the same function from its point of view.
He also had it play thousands of games against itself as another way of learning.
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour

e Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour

o . Q=35GeV
0.8 I Q=091.2GeV ] e Colour-singlet pair end up close in phase space and
0.7 |- Q=189GeV -~ form highly excited hadronic states, the clusters
0.6 - Q 1000 GeV 7
0.5 - - e Pre-confinement states that the spectra of clusters
04 L | are independent of the hard process and energy of
03 L i the collision
0.2 | -
0.1 | -

0 ; Ly . .|

1 10
M/GeV

" [S. Gieseke, A. Ribon, MH Seymour,
P Stephens, B Webber JHEP 0402 (2004) 005]
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour

e Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters

e Pre-confinement states that the spectra of clusters
are independent of the hard process and energy of
the collision

e Peaked at low mass (1-10 GeV) typically decay into 2
hadrons
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

2PiNTS 2024, IFJ PAN

QCD provide pre-confinement of colour

Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters

Pre-confinement states that the spectra of clusters
are independent of the hard process and energy of
the collision

Peaked at low mass (1-10 GeV) typically decay into 2
hadrons

ML hadronization
1st step: generate kinematics of a cluster decay:

Andrzej Siodmok



Road map for today

HadML* v1 Generator

PRD 106 (2022) 096020 |
HadML
' —» Hadrons

el

Parton =% Cluster I Discriminator
N\ —> Hadrons
Frag
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Towards a Deep Learning Model for Hadronization

ML hadronization

1st step: generate kinematics of a cluster decay to 2 hadrons
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Towards a Deep Learning Model for Hadronization

ML hadronization

1st step: generate kinematics of a cluster decay to 2 hadrons

How? Generative Adversarial Net

HadML* v1 Generator
. PRD 106 (2022) 096020

We have a conditional :

GAN, with cluster ; A
4-vector input and two

hadron 4-vector outputs.

-» Hadrons

. Parton = Cluster

Discriminator .

Cluster P Hadrons
Frag

.................................................
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Towards a Deep Learning Model for Hadronization

ML hadronization

1st step: generate kinematics of a cluster decay to 2 hadrons

How?

Generative Adversarial Net
HadML* v1 Generator
. PRD 106 (2022) 096020

We have a conditional
GAN, with cluster
4-vector input and two

hadron 4-vector outputs.

-» Hadrons

> <

. Parton = Cluster

Discriminator .

Cluster P Hadrons
Frag

..................................................

Training data:

ris

ete™ (()11151()115 at

m°(E, pz, py, p-) | Simplification:
considering only
Cluster (E, pz, py, p-) pions and generating
two angles in the
TE, pe, py, p=) | cluster rest frame.
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Training HADML vl

Losses

0.9 1
0.8 1
0.7 1

0.6 1

—— Discriminator Loss /2 [0.6
Generator Loss
k0.5
I L
0.4 2
i £
@
e
%
)
703 i
(O
-
e
[ i 0
TOQCD
0.1
L <
e — ,
| v LS L] L . ¥ | L] L L | v » v L] v L) L] -OO
0 200 400 600 800 1000
Epochs

We have a conditional
GAN, with cluster
4-vector input and two
hadron 4-vector outputs.

Simplification:
considering only pions
and generating two
angles in the cluster rest
frame.

This is a typical
learning curve for
CAN training
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Integration into Herwig

CPU
We extract
clusters + hadrons '
N ARy
$ rs d
., Trainin Event generation
@ python g 2

Re-insert the model
back into H7

%% ONNX
RUNTIME

This then allows us to run a full event generator and produce plots

2PiNTS 2024, IFJ PAN Andrzej Siodmok 25



Performance: Pions

Low-level Validation
(similar to training data)

e~ collisions at

VS = 91.2 GeV

&

ar© ar°
VS qr° kinematic variables
qr© q1°

T . - . + 0 R . - . 0
Pseudorapidity distribution of 7~ and 7 multiplicity, Pert=0 Transverse momentum distribution 77, Pert=0

_’\\1—]IIIIII]IIIIII[IIII[IIII—gl:—lill]IIIIIIIIIII[IIIIII
S L B =
K = =il 1 B Hz
) i< 4 K B
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" 08— — 2100 T B
5 - i B
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Lo X il Lo
2
0.6 — = 10 " E
- = ; ] M-
0.4 (— - 10 7 E
B - 4_—
0.2 — 1 10 B
& - 5
0 L o | —— 10 E mﬁl T BT
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LEP DELPHI Data

With a “full” model, we can compare directly to data!

Performance: Data!

IIIIIIIIIIIIIII

—+— Data

H7

—+— Hyz+HADML 7

I T

Al
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Road map for today

HadML* v1 Generator

PRD 106 (2022) 096020 |
HadML
' —» Hadrons

el

Parton =% Cluster I Discriminator
N\ —> Hadrons
Frag
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Road map for today

HadML v2: Closure Test

(this paper)
—» Hadrons
Parton =% Cluster —»
Event —» Parton =% Cluster =—» —» Hadrons
Parton = Cluster =9
—» Hadrons

T,

{
11

HadML v2: Stress Test
(this paper)

Parton =% Cluster —p

Event =—» Parton =% Cluster =9

—» Hadrons

Parton = Cluster =—»

Parton = Cluster —»

Event = Parton =% Cluster =%

—» Hadrons |€—

—» Hadrons

)] 8

Discriminatot

—» Hadrons

Parton = Cluster —»

J —» Hadrons 'g—

—» Hadrons

C
| O

|

Protocol for fitting a deep generative hadronization model in a realistic data setting, where we

only have access to a set of hadrons in data.

Andrzej Siodmok
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- Discriminator Loss

Losses

Generator Loss

T
&
un

T
&
IS

™~

Epochs

0.7

L]
b
o

Best Wasserstein Distance

0.1

Training HADML v2

Now, the generator is
local (per cluster), but
the discriminator is
global (whole event).

Discriminator is a

permutation-invariant

architecture called
Deep Sets.

Simplification only

Pions
4000 5000 6000

2PiNTS 2024, IFJ PAN
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Performance

( I
0.9 : : : : :
Initial GAN 1.4} Initial GAN " .
65 “**: Final GAN “**'1 Final GAN This is what
© 0.7} Final GAN kinmn { @ 1.2 Final GAN kin™"
Lo —n | 810/ 3 H7Clster the generator
T H7 Cluster kin™" | © H7 Cluster kin™" b y
5 | [ 508 Sees
g 0.4 _ s g 0.6}
= O03F | = T ermaiaseeenet = __-__,......__ 2
Z02 | 204 Fau i .
\0'0—1.5 =10 -05 00 05 1.0 1.5 099%0 05 10 15 20 25 3u
¢ in truth cluster frame 6 in truth cluster frame
Inigial GAIN 1 Initial GAN
_.]' [ H7 Cluster | 1 H7 Cluster A
< ; H7 Cluster kin™" | 2 ;4-1| R H7 Cluster kin™"
£107? - 2 * % Final GAN £ || &l Final GAN
L o Final GAN kin™n | © - B Final GAN Ki
- | | = 8 N N
2 7 G B k. This is what
(] (O]
Qo o o : :
s S0 o discriminator
b £ =
10~ “sees”
0.0 2.5 50 7.5 10.0 12.5 15.0 17.5 -10 -5 0 5 10 15

E in truth lab frame [GeV]
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Performance: going beyond inputs and outputs

i
un

nital GAN H7 Cluster Initial GAN H7 Cluster
; L Fi 3 7 Clu min
] Final GAN H7 Cluster kin™ 3.0 Inal GAN H7 Cluster kin
) 10 Final GAN kin™" 3 Final GAN kin
S c 2.5
o S
©
© ' S 2 o}
o = 0 :
. 10" . 1 E
o :
u = 1.5}
W o
= e
E e 1 O»
-11 c *-

210 >

0.5¢

21 - - . a : i
T 107 10° 0:0%:0 " 0:a 02 0@ 08 - B8
AR(hadron, neighbor) m’n(E!l.’m"'mv E':r"‘().“ll‘.l:')/(Ef'..ﬂ"rr.'r. + Er:r-tq"l(‘n:r)

MINIMAL AR? = A¢* + An?

2PiNTS 2024, IFJ PAN Andrzej Siodmok




o e e e W W e W R e W W W R R W e e e e M W PR W R MM W M W MM W MM R M M MM W MM M W M MM W M MW W W W W oW W - m m mmomomomem o

f HadML* v1 Generator . E HadML v2: Stress Test
PRD 106 (2022) 096020 (this paper)

HadML

1
|
1
1
|
1
1
]

/ T Parton = Cluster = =24
+ Parton = Cluster I Discriminator . ' :
: \ '+ Event — Parton = Cluster = |4IEIC] — Hadrons | <——
' = Hadrons v '
: - Parton = Cluster —» :
: 8 Cluster —» Hadrons ;
isimilar setup for string model MLHac 2203.04983 E . . §
|=“....m..".,~,.,:...m,.w..,.an.m,.“".....,..".,”._,..,"m...r..,..vm; . I ©
; v E
PR L L L L L L L, R S L LI EELELLELLE LR U -
HadML v2: Closure Test : Generator x n 4
(this paper) : L1 B
Cluster ' g
—» Hadrons —» Hadrons ! .
Parton = Cluster —» Fraa ; Parton =% Cluster = HadML 'y
Cluster | Event —» Parton =% Cluster = — Had :
Event = Parton =% Cluster =—» —» Hadrons vent arton uster HadML SeIons

Fraq

Parton =% Cluster = [ #1511 Parton = Cluster —»

|Z7-1s )| —> Hadrons pEE LU —» Hadrons

Dlscrlmlnator

A key advantage of this fitting protocol over other methods is that it can
accommodate unbinned and high-dimensional inputs.

The approach could also be used to tune (without binning) data to a parametric physics model (for
example cluster) as well. However, this would require making the cluster model differentiable.
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e For HADML, we have made significant progress, but there
are still multiple steps to build and tune a full-fledged
hadronization model.

What is next?

e Number of technical and methodological step needed:

- Directly accommodate multiple hadron species with their relative probabilities

2PiNTS 2024, IFJ PAN Andrzej Siodmok



Directly accommodate multiple hadron species with their relative probabilities

0.12 - HadML [nom.]

"y M=

E L H7 [nom.]
0.10 A

2 HadML [alt.]

- | H7 [alt.]

&) 0.06 -

© 5 -

& 0.04- _—hj I

- U =

O | i

Z 0.02 - o '—IL_II

=== MMM ONONONCNLO O LOLNLNNN M MM NN OYOYOYO ™SOS
OO OO A OO A e A OO e e e e OSSN0 NS i
I—K\INHNNNMMNMMMMMMNNI—IHNNHNN:—INN:—INNNLDI\I\I\NOOHN
A NNNN O ' OOOOOOO I+ O
HHHNNNNNNNM m

2312.08453 PDG ID of First Hadron
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For HADML, we have made significant progress, but there
are still multiple steps to build and tune a full-fledged
hadronization model.

HADML is naturally suited for GPUs

Tl A D ™M AL

What is next?

Number of technical and methodological step needed:

>
>
>
>
>

Include heavy clusters (so far done by Herwig)

Hyperparameter optimization, including the investigation of alternative generative models
More flexible model with a capacity to mimic the cluster or string models and beyond.
MLhadML joining idea of MLhad reweighting and HadML fitting deep generative models
Tune to the LEP data

There is still a multi-year program ahead of us, but it will be worth it!

Early 1980's Early 2020's

STRING Hadronization CLUSTER Hadronization

HADML

L 0
™ . v—
A Y =
| V.
) ) - : 0
4 P

W .
[

So Stay tuned!
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Discriminator HadML vl vs v2

HadML vi

The loss function:

L=— > (og(D(r()+log(l—D(G ()

A~HERWIG, z~p(z)

HadML v2

The discriminator function is modified, we parameterize is as a Deep Sets model

1 mn
Delx)=F [ = b (h;,¢ CWE
E () (n; (h wD<p),wF>

® embeds a set of hadrons into a fixed-length latent space and F' acts on the average

invariant under
permutations of
hadrons

L=- Z log (DE (x)) — Z log (1 — Dg ({G (2,M)}))

x~data {G}~HERWIG, z~p(2)

The approach could also be used to fit (without binning) data to a parametric physics model (for
example cluster) as well. However, this would require making the cluster model differentiable.
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Hadron

Hadron

Hadron

Discriminator HadML v2

-

40
N
y\\/

-

Discriminator

~

——— true /false

J

The discriminator function is modified, we parameterize is as a Deep Sets model

n

n

1
DE ('T‘) =F <— Z ¢ (h'iaqu,) ,'wF)

1=1
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invariant under
permutations of
hadrons
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Architecture: conditional GAN

Generator and the Discriminator are composed of two-layer perceptron
(each a fully connected, hidden size 256, a batch normalization layer, LeakyRelLU activation function)

W,,b,

Input layer -+ Output layer

Generator

Hidden layer 1 Hidden layer 2

Input

Cluster (E, pz, py, p-) and 10 noise features sampled from a Gaussian distribution

Output (in the cluster frame)

¢ ) pglar angle we reconstruct the four vectors of
¢ - azimuthalangle the two outgoing hadrons
Discriminator
Input

d) and @ labeled as signal (generated by Herwig) or background (generated by Generator)

Output

Score that is higher for events from Herwig and lower for events from the Generator
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Data normalization:
cluster’s four vector and angular variables are scaled to be between -1 and 1
(tanh activation function as the last layer of the Generator)

Discriminator and the Generator are trained separately and alternately by two
independent Adam optimizers with a learning rate of 1074, for 1000 epochs

—— Discriminator Loss /2 [0.6

Generator Loss
0.9 A

F0.5

0.8 1

T
S
IS

Losses
o
w
Best Wasserstein Dis

0.7 4

T
o
N

0.6 1
POz

r x r . . — 0.0
0 200 400 600 800 1000
Epochs

e The best model for events with partons of Pert = O, is found at the epoch
849 with a total Wasserstein distance of 0.0228.
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Wasserstein distance

The Wasserstein distance
e For discrete probability distributions, the Wasserstein distance is called the earth mover’s distance (EMD):
e EMD is the minimal total amount of work it takes to transform one heap into the other.

W(P,Q) = min B(y)
YEIl

e Work is defined as the amount of earth in a chunk times the distance it was moved.

B(y) = Z V(xp'xq)”xp - xq”

XpXq

B = [

Best “moving plans” of this example

5th Inter-experiment Machine Learning Workshop



Wasserstein distance

Q Xq A “moving plan” is a matrix

| 1

The value of the element is the
amount of earth from one
position to another.

Average distance of a plan y:

BO) = D ¥(pxg) 1% —

XpXq

Earth Mover’s Distance:
W(P,Q) = minB(y)
y€Ell

moving plan y The best plan
All possible plan I1

Iulh__fji
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Minimax Loss

In the paper that introduced GANs, the generator tries to minimize the following function while the discriminator tries to
maximize it:

E, [log(D(x))] + E.[log(1 — D(G(2)))]

In this function:

D(x) is the discriminator's estimate of the probability that real data instance x is real.

Ey is the expected value over all real data instances.

G(z) is the generator's output when given noise z.

D(G(z)) isthe discriminator's estimate of the probability that a fake instance is real.

E, is the expected value over all random inputs to the generator (in effect, the expected value over all generated

fake instances G(z)).

» The formula derives from the cross-entropy between the real and generated distributions.

The generator can't directly affect the log(D(x)) term in the function, so, for the generator, minimizing the loss is
equivalent to minimizing log(1 - D(G(z))) .
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Performance: Energy of the collisions

Low-level Validation

0 0
(beyond training data different energy) m am
e"e” collisions at VS a9 kinematic variables
Vs =192 GeV
ar© qTO

Pseudorapidity distribution of 77~ and n° multiplicity, Pert=o0 Transverse momentum distribution 71°, Pert=o
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Performance: All Hadrons

Low-level Validation

(beyond training data different hadrons) hi h1
e"e” collisions at VS h kinematic variables
Vs = 91.2 GeV
h2 h2

As a crude “full” model, we simply take the PIDs
from Herwig and the kinematics from the GAN.

Pseudorapidity distribution of kaon multiplicity Transverse momentum distribution of kaon
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