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Oscillons: overview and the gap



Oscillons: overview and the gap: Oscillons in general

Oscillons are spatially-localised, long-lived, oscillatory solutions of the field
equation(s) of classical field theories

• nonlinearity of the field equation is essential

• no topological charge

• it is surprising that oscillons do not couple more strongly to radiation

• the fundamental reason for their existence remains somewhat mysterious

• sometimes the oscillon can be thought of as a decaying sphaleron of the field
theory 1.

1N. Manton and TR, The Simplest Oscillon and its Sphaleron, Phys. Rev. D 107, 085012 (2023)
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Oscillons: overview and the gap: Oscillons in general

• They are found in many models and in various dimensions,
– phase transitions in condensed matter
– astrophysics (dark matter candidates)
– cosmology (inflation)2 3

– fundamental theory of electroweak interactions
– graphene ribbons
– can be created directly from radiation, as an intermediate stage for
kink-antykink creation 4

2J. Sakstein and M. Trodden, Oscillons in higher-derivative effective field theories, Phys. Rev. D 98, 123512 (2018)
3Kaloian D. Lozanov and Mustafa A. Amin, End of inflation, oscillons, and matter-antimatter asymmetry, Phys. Rev. D

90, 083528 (2014)
4TR and Ya. Shnir, Phys. Rev. Lett. 105, 081601, (2010)
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Oscillons: overview and the gap: Oscillons in general

• A basic oscillon is periodic, with a fundamental frequency ω < m,
where m is the threshold for radiation modes.

• A model has to have a frequency gap (counterexamples in the future).

• The oscillon has an arbitrary amplitude lying in some finite range.

• As the amplitude increases, the frequency ω decreases away from the threshold m.

• In 1+1d ω → m but in higher dimensions ω → ωmax < m.

• The main channel of losing energy to radiation is usually through 2ω
(but there are exceptions):
– large oscillons with ω < m/2
– models without quadratic terms in the e.o.m.
– breathers in the sine-Gordon model.
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Oscillons: overview and the gap: Example: ϕ4

Let us consider the standard ϕ4 model:

L =

∫
1
2
ϕ2

t −
1
2
ϕx −

1
2
(ϕ2 − 1)2 dx

Starting from gaussian initial conditions

ϕ(x, 0) = 1 − Ae−cx2
, ϕt(x, 0) = 0

for A = 0.5 we see different behaviour for different values of c.
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Oscillons: overview and the gap: Example: ϕ4

Oscillon profile and small radiation tails for A = 0.5, c = 0.14 and t ≈ 2000
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Oscillons: overview and the gap: Example: ϕ4

Similar behaviour is observed for arbitrary small value of A, with a certain scaling
c(A).
Small oscillations around vaccua obey (?) Klein-Gordon equation

ψtt − ψxx − 4ψ +O(ψ2) = 0

for ϕ = ±1 + ψ

• For large times solutions of KG equations behave as

ψ(0, t) ∼
cos(2t + δ)

√
t

• This was true for c = 1 and c = 0.5, but for c ≈ 0.14 oscillations did not change
visibly.

• Sometimes almost quasi-periodic oscillations were visible.

• Scalability of oscillons means that linearization can be incorrect even as A → 0.
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Oscillons: overview and the gap: Example: ϕ4

Naive explanation:
Assuming that the field profile does not change with time we can plug:

ϕ(x, t) = 1 − A(t)e−cx2

into the field theory lagrangian and integrate over x. This gives us mechanical
lagrangian for anharmonic oscillator:

L =

√
π

8c

[
Ȧ2 − A2(c + 4) + 4

√
2
3

A3 −
A4
√

2

]

Small oscillations oscillate with frequency ω0 =
√

c + 4 > 2. In field theory such
oscillations frequencies are above the mass threshold and disperse.

However, nonlinear corrections lower the frequency below the mass threshold

ω = ω0 −
80 + 3

√
2ω2

0

8ω3
0

A2
0 +O(A4

0)

Critical amplitude, for ω < m:

Acrit =

√
ω0 − 2
ω
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Oscillons: overview and the gap: Example: ϕ4

Power spectrum of the field at centre for A = 0.5, c = 0.1

• Basic frequency is below the mass threshold mϕ4 = 2

• Higher harmonics are in the continuous spectrum (radiation).

• Smaller peaks (for example at the threshold) are responsible for the modulations.

10



Oscillons: overview and the gap: Relation to breathers

In the integrable sine-Gordon model

L =

∫
1
2
ϕ2

t −
1
2
ϕ2

x − VsG(ϕ) dx , VsG(ϕ) = 1 − cos(ϕ)

there exists a periodic finite-energy breather solution

ϕB(x, t) = 4 atan

√
1 − ω2

ω

cos(ωt)

cosh
(√

1 − ω2 x
)


with ω = cos(A/4) ∈ (0, 1) with mass threshold msG = 1.
Potentials in many field theory models around vacua (after shift and rescaling) can be
expressed as

V(ϕ) = 1 − cos(ϕ) +O(ϕn) where n > 2

therefore, in some sense, small amplitude oscillons owe their existence to sine-Gordon
integrability.
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Massless model



Massless model: Construction

Let us consider a real scalar field theory in (d + 1) dimensions

L =

∫ (
1
2
ϕ2

t −
1
2
(∇ϕ)2 − U(ϕ)

)
ddx.

Here we will assume d = 1 or 3. Let U(ϕ) have a form very similar to the simplest,
most prototypical, double vacuum potential, i.e., ϕ4 but flattened near the vacua, i.e. so
that the potential is quartic near the vacua. This can be achieved with a rational
modification

U(ϕ) =
W2

W + ϵ
, W =

1
2
(1 − ϕ2)2,

where ϵ is a small positive parameter, which controls the size of the deformed region.
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Massless model: Construction

where the shift U0(ϵ) = −1/(4ϵ+ 2) + 1/2 is just for better visualization.
Near vacua:

U ≈
1
4ϵ

(1 − ϕ)4(1 + ϕ)4

so the mass of (infinitesimally) small perturbations vanishes,

m2 =
d2U
dϕ2

∣∣∣∣
ϕ=±1

= 0.

This model has no mass gap, so oscillons should not exist.
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Massless model: Numerical results

However, large amplitude oscillons "see" the potential as if it was the ϕ4 model, and
only the low amplitude tails "feel" that the model is massless.
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Massless model: Numerical results

Oscillons in the modified model definitely exist, although they live shorten than usual
oscillons.
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Massless model: Numerical results

• similar spectra, but

• ϕ4: radiation through 2nd

harmonic

• ϕ4: slow threshold radiation
(residue from bad IC)

• mod: radiation through 1st

harmonic (speed of light)

• mod: no threshold radiation
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Massless model: Oscillons in 3+1d
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Massless model: Oscillons in 3+1d

• In 3+1D oscillons in ϕ4 are less stable

• No integrable sine-Gordon model (no 3d breathers)

• Additional upper frequency 0 < ωcr,1 < ω < ωcr,2 < m

• Modulations grow with time

• Lifetimes form resonant patters (with modulation5)

• After reaching ωcr,2 fast decay is observed

• Inthe deformed model modulations vanish

5E. P. Honda, M. W. Choptuik, Fine structure of oscillons in the spherically symmetric ϕ4 Klein-Gordon model, Phys. Rev.
D 65 084037 (2002).
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Massless model: Oscillons in 3+1d

Lifetimes of oscillons from gaussian initial conditions:

ϕ(x, 0) = 1 − 2e−r2/r2
0

• Sometimes oscillons in the modified model live longer than in the non-modified
model.

• More radiation in the deformed model
• But no instability due to the modulations.
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Massless model: Oscillons in 3+1d

For fixed r0 but changing ϵ we can see another resonant (fractal-like?) structures
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Summary



Summary: Oscillons in 3+1d

• Oscillons are interesting and important objects

• Nonlinearities are essential for their existence

• In standard theories their frequency is below the mass threshold

• But they also can exits in gap-less models
– only finite amplitude oscillons exist (similar to usual 3+1d)
– can have more applications then previously expected
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