Time-ordering issue of TMD soft factors

Yizhuang Liu, UJ 2PiNTS 2024

Outline

- Part I: Coordinate-space analyticity and time-ordering issue of TMD soft factors
- a) General introduction to coordinate analyticity
- b) Euclidean-type parametric representation in perturbation theory
- c) Equalities between TMD soft factors

Based on JHEP09(2024)030

Motivation

- 1. TMD soft factor is part of the TMDPDFs for inclusive process, for example small q_T inclusive Drell-Yan process.
- 2. Contains information regarding rapidity evolution: Collins-Soper kernel.
- 3. Defined in non-Euclidean manner: sums over amplitudes-squares. But also, as Wilson-loop averages with specific Wilson-line directions.
- 4. Is it possible to find Euclidean-type representations? This point is confusing in literature, but crucial for lattice application.

TMD soft factors: S and S_t

 $(0_t,0_z,0_\perp)$ $(0,-\nu,\vec{b}_\perp)$

Figure 5: The S_t .

General theory of coordinate space analyticity

- General theory of coordinate space analyticity
- 1. Axioms: spectral-condition && micro-locality && temperedness of *Wightman-Distributions*.
- 2. Consequence: existence of analytic Wightman function in the `permuted extended-tubes' and totally space-like region.
- 3. Established in three steps.
- First: Paley-Wiener type arguments for analyticity in the forward tubes $T_n^P = \{(z_n, z_{n-1}, ... z_1); Im(z_{P_k} z_{P_{k-1}}) \in -V_+\}$ for $\mathcal{W}^P(z_n, ... z_1) = \langle \phi(z_{P_n}) ... \phi(z_{P_1}) \rangle$. Spectral condition is crucial.
- Second: apply proper complex Lorentz transforms to analytic-continue \mathcal{W}^P further into the extended forward tubes.

General theory

- Finaly, local-commutativity implies that all the n! analytic Wightman functions \mathcal{W}^P can be combined to be a single-valued analytic Wightman function in the permuted extended-tubes: Union of all the extended tubes.
- 5. Important sub-regions of analyticity.
- Euclidean region $\mathcal{E}_n = \{(z_n, ... z_1); z_i^0 \in -iR, Im(\vec{z}_i = 0), z_i \neq z_i\}$
- Totally space-like real separations $\{(x_n, ... x_1); (x_i x_j)^2 < 0\}$
- 7. $W|_{\mathcal{E}_n}$ are called Schwinger functions && Euclidean correlation functions.

Properties of analytic Wightman functions

- 8. Properties of analytic Wightman functions
- Covariance under proper complex Lorentz transformations.
- Permutation symmetry && anti-symmetry.
- Spin-statistics && CPT.
- 9. These properties can be non-trivial: for a complex scalar one has $\mathcal{W}_{\phi\phi^{\dagger}}(-iTe_t) = \mathcal{W}_{\phi\phi^{\dagger}}(iTe_t)$ (T>0),

$$\langle \phi^{\dagger}(0)e^{-HT}\phi(0)\rangle = \langle \phi(0)e^{-HT}\phi^{\dagger}(0)\rangle.$$

This is an operator relation that flips the operator ordering!

Properties

- 10. Relation to real-time Wightman distributions. One can obtain real-time Wightman distribution as boundary-values of analytic Wightman functions.
- ll. The Wightman-prescription

$$\langle \phi(t_n)..\phi(t_1)\rangle = \lim_{\eta \to 0^+} \mathcal{W}(t_n - i\eta e_t, ..., t_1 - i\eta e_t).$$

- One approaches the boundary point within the forward tube T_n .
- For invariant lengths, W-prescription means $-x_{ij}^2 + i\eta x_{ij}^0$.
- 12. The Feynman-prescription

$$\langle T\phi(t_n)..\phi(t_1)\rangle = \lim_{\eta \to 0^+} \mathcal{W}(t_n(1-i\eta),...,t_1(1-i\eta))$$

• For invariant lengths, F-prescription means $-x_{ij}^2 + i\eta$.

Schwinger functions from lattice models

- How to realize?
- 1. Non-perturbative level. Osterwalder-Schrader reconstruction theorem. Distributions in the Euclidean regions \mathcal{E}_n that are rotational invariant, reflective-positive and grow moderately in n are Schwinger functions of a Wightman QFT and can be uniquely continued back to real time.
- 2. Schwinger functions can be obtained as scaling limits of lattice models approaching critical points. $\langle \sigma(r\xi)\sigma(0)\rangle_{\xi\to\infty}\to Z(\xi)f(r)$. Many examples in 2D. Conjectured for QCD.
- 3. Short distance limit: $f(r) \to \frac{1}{r^{2d}} (1 + r \ln r + \cdots)$. Perturbation to the UV-CFT. UV of IR = IR of UV.
- 4. CFTs are the "simplest" Wightman QFTs. Global (Hilbert space and operator algebra) from UV-asymptotics of local-correlators (OPE).

Analyticity in Perturbation theory

- Momentum space analyticity in DR perturbation theory.
- 1. Analyticity in perturbation theory are again due to exponential decay in parametric representations.
- 2. In momentum space, below-threshold quantities allow Schwinger-parametrization of the form $\int_0^\infty D\alpha \ F(\alpha)e^{Q^2P(\alpha)}$ where $P(\alpha) > 0$ are rational functions.
- 3. They can be continued to the region $Re(Q^2) < 0$.
- Similarly, in coordinate space for n-point function, one has parametric integrals of the forms $I = \int_0^\infty U(\alpha) e^{\sum_{i < j} x_{ij}^2 P_{ij}(\alpha)}$ for Euclidean and totally-space-like separations.

Analyticity in Perturbation theory

- Consider parametric integrals $I = \int_0^\infty U(\alpha) e^{\sum_{i < j} x_{ij}^2 P_{ij}(\alpha)}$.
- 1. The rational functions $P_{ij}(\alpha)$ are positive.
- 2. The $P_{ij}(\alpha)$ allows explicit representations through spanning trees and connected paths between i and j.
- 3. Only depends on invariant length-squares $x_{ij}^2 = (x_i x_j)^2$.
- 4. Defines analytic function in the below-threshold region $\mathcal{E}'_n = \{(z_n, ... z_1); Re(z_{ij}^2) < 0, \forall i \neq j\}.$
- 5. Agrees with spectral representation in $\mathcal{E}'_n \cap T^P_n$ for any P. This is because that $\mathcal{E}'_n \cap T^P_n$ is path-connected and contains $\mathcal{E}_n \cap T^P_n$.

Analyticity in PQCD

- For QCD perturbation theory in covariant gauges (Feynman gauge for example). Spectral condition and local commutativity are satisfied for gluon fields, to all orders.
- Below threshold representation for gluonic correlators exist in Euclidean and totally space-like real points.
- Thus, one has below threshold representation for gluonic Wightman functions in the below-threshold region $\mathcal{E}'_n = \{(z_n, ... z_1); Re(z_{ij}^2) < 0, \forall i \neq i \}$

DY TMD soft factor

 One application of the above is to establish the below-threshold representation for Drell-Yan TMD soft factor in the exponential regulator.

•
$$S(b_{\perp}, \nu, \epsilon) = \frac{1}{N_c} \langle Tr \, \overline{T} \, U_{\overline{n}n} (\overrightarrow{b}_{\perp} - i\nu e_t) T \, U_{n\overline{n}}(0) \rangle$$

- $U_{n\bar{n}}(x)$ is a Wilson-line cusp at x, formed by past-pointing gauge-links in light-like directions $n=\frac{1}{\sqrt{2}}(e_t+e_z)$ and $\bar{n}=\frac{1}{\sqrt{2}}(e_t-e_z)$. $\nu>0$ is the exponential regulator. \vec{b}_{\perp} is the transverse separation.
- The Wilson-loop can be expanded in terms of the gluonic Wightman functions picked-up from the Wilson-loops. Wightman prescriptions are used for the T and \overline{T} from analytic Wightman functions.

TMD soft factors: S and S_t

 $(0_t,0_z,0_\perp)$ $(0,-\nu,\vec{b}_\perp)$

Figure 5: The S_t .

Checking invariant lengths

- To see if these analytic Wightman functions allow below-threshold representations, one needs to check the invariant length-squares. There are four types.
- 1. Two points under the same T or \bar{T} , on different Wilson-line. $x_{A,ij}^2 = -2\lambda_i\lambda_j < 0$. Space-like.
- 2. One point from T, another from \overline{T} , on same Wilson-line direction. $x_{B,ij}^2 = -\nu^2 b_\perp^2 \sqrt{2}i\nu(\lambda_i^L \lambda_i^R)$. Below-threshold.
- 3. One point from T, another from \overline{T} , on different Wilson-line directions. $x_{C,ij}^2 = -\nu^2 b_\perp^2 2\lambda_i^L \lambda_j^R \sqrt{2} \mathrm{i} \nu (\lambda_i^L \lambda_j^R)$. Below-threshold.

Null separation and below-threshold representation

- 4. Two points on the same Wilson-line. This is tricky since null-separation is encountered. But the $i\eta$ solves the problem.
- 5. $(\lambda_i n \lambda_j n i\eta e_t)^2 = -\eta^2 \sqrt{2}i\eta(\lambda_i \lambda_j)$. Approached within the blowthreshold region.
- Thus, below-threshold representation exists.
- Furthermore, the η s can be send to zero from the beginning for three reasons.
- 1. The $-\eta^2$ regulates UV-light-cone divergences, which are regulated by the DR already.
- 2. The $i\eta$ terms always have the same signs within the T and \bar{T} groups as the $i\nu$ terms. Thus, $i\eta s$ are replaced by the $i\nu$ s.
- 3. The $-\eta^2$, $i\eta$ terms are added to terms with negative real parts that never vanish in the integration region.

Below-threshold representation

 Thus, we conclude that the DY TMD soft-factor allows below-threshold representations in terms of three invariant lengths:

1.
$$x_{A,ij}^2 = -2\lambda_i\lambda_j$$

2.
$$x_{B,ij}^2 = -\nu^2 - b_{\perp}^2 - \sqrt{2}i\nu(\lambda_i^L - \lambda_j^R)$$
.

3.
$$x_{C,ij}^2 = -\nu^2 - b_{\perp}^2 - 2\lambda_i^L \lambda_j^R - \sqrt{2} i\nu (\lambda_i^L - \lambda_j^R)$$

- As far as $\nu \neq 0$ and $\epsilon \neq 0$, gluonic Wightman functions restricted to these separations are still covariant and permutation-symmetric.
- For $\nu = 0$, naïve invariant lengths for the DY-shape TMD soft factors. Can be used for the (non-gauge-invariant) δ regulator.

Relationship between soft factors: $S = S_t$

- The existence of below-threshold representation can be used to establish certain identities.
- Consider $S_t(b_{\perp}, \nu, \epsilon) = \frac{1}{N_c} \langle Tr \, T \widetilde{U}_{n\bar{n}}^{\dagger} (\vec{b}_{\perp} \nu e_z) \widetilde{U}_{n\bar{n}}(0) \rangle$.
- 1. Here $\widetilde{U}_{n\bar{n}}(0)$ is a Wilson-line cusp with future-pointing light-like link in \bar{n} directions.
- 2. Overall time-ordering.
- 3. A quark-anti-quark pair in n direction moving from past to t = 0, then transits to another pair in \bar{n} propagating to future. Space-like form factor.
- 4. $-ve_z$ in the e_z direction.

TMD soft factors: S and S_t

 $(0_t,0_z,0_\perp)$ $(0,-\nu,\vec{b}_\perp)$

Figure 5: The S_t .

Relationship between soft factors: $S = S_t$

- One can show that $S = S_t$ based on Minkowskian parametric representations of S_t .
- The M-parametric representations of S_t , after Wick-rotation, become exactly the below-threshold representations for S.
- Thus, the DY-TMD soft factor can be represented as a space-like form factor.

Generalization: Analytic Wilson-loop averages.

- We can conjecture the following:
- For any closed complex-space-time valued oriented loop C, if
- 1. The loop is piece-wisely smooth with finite-numbers of cusp singularities with finite cusp angles.
- 2. An arbitrary non-coinciding set of points picked up from *C* always lives in the natural coordinate-space analyticity region (such as permuted extended -tubes).
- Then the analytic Wilson-loop average $\langle W(\mathcal{C}) \rangle$ exists and behave like the analytic Wightman functions in the analyticity region.

Generalization: Analytic Wilson-loop averages.

- The analytic Wilson-loop average $\langle TrW(\mathcal{C}) \rangle$ depends only on the \mathcal{C} and the orientation.
- If $C = C_1 \cup C_2 \cup C_3 ... C_n$ with $C_i \cap C_j = \emptyset$. Then $\langle TrW(C) \rangle = \langle TrW(C^P) \rangle$ where $C^P = C_{P_1} \cup C_{P_2} \cup C_{P_3} ... C_{P_n}$. This plays the role of local-commutativity.
- For small Wilson-loop sizes, $\langle TrW(\mathcal{C}) \rangle$ allows perturbative expansion in terms of the perturbative gluonic Wightman functions.
- Analytic Wilson-loops leads to analytic Wightman functions of gauge-invariant operators such as $tr F^2$, if one performs small size OPE for the Wilson-loops.

TMD soft factors: S and S_t

Figure 4: The S.

The Wilson-lines for *S* can be deformed to space-like directions without changing the below-threshold property

Figure 5: The S_t .

The Wilson-lines for S_t can be deformed to time-like directions without changing the below-threshold property

Soft factor relations for three rapidity regulators.

- Given the above, one can define TMD soft factors that contains three regulators at once: off-light-cone, finite LF-length and exponential.
- 1. $S_t(T_1, T_2, b_\perp, \nu, Y, \epsilon)$: still a `real-time' Wilson-loop with `transverse' gauge links in $\vec{b}_\perp \nu e_z$ directions.
- S_t is defined with time-like links with $v = n + e^{-Y}\bar{n}$ and $v' = \bar{n} + e^{-Y}n$. Resembles the heavy-quark form factor in the 2019 Ji-Liu-Liu paper.
- Time-ordering: $T_1 = T_1(1 i\eta)$ and $T_2 = T_2(1 i\eta)$. Can be analytically continued smoothly to Euclidean times $T_1 = -iL^-$ and $T_2 = -iL^+$ where $L^{\pm} > 0$.
- 2. $S(L^+, L^-, b_\perp, \nu, Y, \epsilon)$: a complex-valued Wilson-loop with `transverse' gauge-links in $\vec{b}_\perp i\nu e_z$ direction.

Soft factor relations for three rapidity regulators.

- S is defined with space-like links in $n_Y = n e^{-Y}\bar{n}$ and $\bar{n}_Y = \bar{n} e^{-Y}n$. Resembles the Collins off-light-cone TMD-soft factor.
- All underlying separations for $S(L^+, L^-, b_\perp, \nu, Y, \epsilon)$ are below-threshold. No null separations at all.
- 3. Complex Lorentz transform : $\Lambda(t,z) = (iz,it)$, or $\Lambda(e_t,e_z) = (ie_z,ie_t)$.
- Under Λ , $v \to in_Y$, $v' \to -i \bar{n}_Y$ and $-ve_z \to -ive_t$.
- The Wilson-loop for $S_t(-iL^-, -iL^+, b_\perp, \nu, Y, \epsilon)$ maps exactly to the Wilson-loop for $S(L^+, L^-, b_\perp, \nu, Y, \epsilon)$ under the Λ .
- 4. Thus, one has the master equality $S_t(-iL^-, -iL^+, b_\perp, \nu, Y, \epsilon) = S(L^+, L^-, b_\perp, \nu, Y, \epsilon)$.

Comments

- The relations above implies that the rapidity evolution kernel for TMDPDFs and for LFWFs are same : S_t is the natural soft factor for LFWFs.
- The renormalization are multiplicative.
- Three standard orders of limits
- 1. $Y \to \infty$ first, $L^{\pm} \to \infty$ second gives the exponential regulator.
- *2.* $Y \rightarrow \infty$ first, $\nu \rightarrow 0$ second gives the finite LF length regulator.
- 3. $\nu \to 0, L^{\pm} \to \infty$ first at finite Y gives the off-light-cone regulator.
- Another possibility, keep L^{\pm} and ν finite, is it possible that $Y \to \infty$ and $\epsilon \to 0$ are related to each-other perturbatively?

Outline

- Part I: Coordinate-space analyticity and time-ordering issue of TMD soft factors
- Part II: Bjorken limit of 2D large N Gross Neveu

Exact results for space-like structure function in 2D Gross-Neveu

- Consider the 2D Gross Neveu in large N. $\mathcal{L} = \bar{\psi}i\gamma \cdot \partial\psi \sigma \,\bar{\psi}\psi \frac{\sigma^2}{2g_0^2}$
- l. Large *N* expansion. Condensate $\sigma_0 = m$ (fermion mass). Running coupling $\frac{1}{g^2(\mu)} = \frac{N}{2\pi} \ln \frac{\mu^2}{m^2}.$
- 2. Large *N* expansion can be performed systematically using effective coupling $g^2(k) = \frac{2\pi}{N} \int_0^\infty \int_{c-i\infty}^{c+i\infty} \frac{dt \, ds}{2\pi i} \frac{\Gamma(1-2s)\Gamma(s+t)}{\Gamma(1-s+t)} \left(\frac{m^2}{-k^2}\right)^{-s}.$ The propagator for σm .
- 3. Large k^2 expansion: shifts to s = -n t. Borel-integrals at power $\left(\frac{m^2}{-k^2}\right)^n$. Marginality manifest.

Space-like structure function

- Define the `twist-three-type" correlator $\mathcal{E}(z^2m^2,\lambda)\bar{u}(p)u(p) = \langle p,i | \bar{\psi}^i(x)\psi^i(x) | p,i \rangle \langle p,i | \bar{\psi}^j(x)\psi^j(x) | p,i \rangle$.
- 1. $z^2 = -x^2 > 0$ space-like and $\lambda = -p \cdot x$. Analyticity in λ in whole complex plane.
- 2. We calculate $\mathcal{E}(z^2 m^2, \lambda)$ to NLO in $\frac{1}{N}$. One-bubble-chain diagrams.
- 3. $\mathcal{E}^{(1)}(z^2 \mathrm{m}^2, \lambda) = \frac{2\pi}{N} e^{-i\lambda} (-F_1 + F_2 F_3)(z^2 m^2, \lambda)$.
- 4. Bjorken limit $z^2 \to 0$ at fixed λ . Exact twist-expansion.

Twist-expansion.

Hard functions and non-perturbative functions.

1.
$$F_1(z^2m^2,\lambda) = \sum_{l=0}^{\infty} \left(\frac{z^2m^2}{4}\right)^l \int_0^{\infty} dt \ q_1^{(l)}(t,\lambda,\mu) + \sum_{l=0}^{\infty} \left(\frac{z^2m^2}{4}\right)^l \int_0^{\infty} dt \ \sum_{p=0}^{\infty} \left(\frac{z^2m^2}{4}\right)^p \left(\left(\frac{z^2m^2}{4}\right)^t \mathcal{H}_1^{l,p}(t,\lambda,\mu) + q_1^{l,p}(t,\lambda,\mu)\right)$$

- 2. Borel integrands $\mathcal{H}_1^{l,p}(t,\lambda,\mu)$ contains renormalon singularity at t=n that cancels with the singularity of $q_1^{l,p+n}(t,\lambda,\mu)$.
- 3. The μ dependency cancels between $\mathcal{H}^{l,p}$ and $q_1^{l,p}$ for $p \geq 1$.
- 4. For $p=0, \mu$ dependency cancels between $q_1^{(l)}(t,\lambda,\mu)$ and $\mathcal{H}_1^{l,0}$. $q_1^{l,0}\equiv 0$.
- 5. $q^{(l)}(t, \lambda, \mu)$ contains no Borel singularity at $t \ge 0$.

Operator content at LP

- Operator content. There are four quark operator even at LP.
- 1. The "Hard function" at LP reads

$$\mathcal{H}^{(0)}(t,\alpha(z),\lambda) = \frac{1}{4\pi} \left(\frac{1}{t} \,_1 \tilde{F}_1(2,1,-\lambda) + \left(\frac{z^2 m^2}{4} \right)^t \Gamma(-t) \,_1 \tilde{F}_1(2,1+t,-\lambda) \right) + \frac{\lambda}{2\pi} \left(\frac{1}{t} \,_1 \tilde{F}_1(2,2,-\lambda) + \left(\frac{z^2 m^2}{4} \right)^t \Gamma(-t) \,_1 \tilde{F}_1(2,2+t,-\lambda) \right).$$

- 2. The first-line: explained by the operators $\sum_{n=0}^{\infty} \frac{1}{n!} \mathcal{H}_n(\alpha(z)) x_{\mu_1} ... x_{\mu_n} \bar{\psi}_i \overleftrightarrow{\partial}^{\{\mu_1} ... \overleftrightarrow{\partial}^{\mu_n\}} \psi_i$
- 3. Second line: explained by the four-quark operators

$$\sum_{n=0}^{\infty} \frac{1}{n!} \tilde{\mathcal{H}}_{n}(\alpha(z)) x_{\mu_{1}} x_{\mu_{2}} ... x_{\mu_{n+1}} \bar{\psi}_{i} \gamma^{\{\mu_{1}} \overleftrightarrow{\partial}^{\mu_{2}} ... \overleftrightarrow{\partial}^{\mu_{n+1}\}} \psi_{i} \bar{\psi} \psi$$

Operator content at LP: condensate contributes

4. Due to the fact that $g_0^2 \langle \bar{\psi}\psi \rangle = -m(1 + O(\frac{1}{N}))$. The contributions from

$$\sum_{n=0}^{\infty} \frac{1}{n!} \tilde{\mathcal{H}}_n(\alpha(z)) x_{\mu_1} x_{\mu_2} ... x_{\mu_{n+1}} \bar{\psi}_i \gamma^{\{\mu_1} \overleftrightarrow{\partial}^{\mu_2} ... \overleftrightarrow{\partial}^{\mu_{n+1}\}} \psi_i \bar{\psi} \psi$$

 $\sum_{n=0}^{\infty}\frac{1}{n!}\tilde{\mathcal{H}}_{n}(\alpha(z))x_{\mu_{1}}x_{\mu_{2}}...x_{\mu_{n+1}}\bar{\psi}_{i}\gamma^{\{\mu_{1}}\overleftrightarrow{\partial}^{\mu_{2}}...\overleftrightarrow{\partial}^{\mu_{n+1}\}}\psi_{i}\bar{\psi}\psi$ are non-vanishing at the order $\frac{1}{N}$. Namely, $\widetilde{\mathcal{H}}_{n}$ is of order $g_{0}^{2}\frac{1}{N}$, while $\langle \bar{\psi}\psi \rangle$ is of order N.

- Thus, vacuum condensates start to contribute even at the leading power.
- At NLP $(O(z^2m^2))$, there are up to eight quark operators $\bar{\psi}\gamma^+(\partial^+)^n\psi^{\dagger}(\bar{\psi}\psi)^3$.
- Parton picture is non-longer convenient.

Twist-expansion and threshold expansion

- The small- z^2 expansion, in terms of the Borel-resumed hard and ``collinear" functions, converges absolutely for any $z^2 < 0$.
- No instanton-like contributions in the coefficient functions.
- The threshold expansion $\lambda \to +i\infty$ can also be performed exactly.
- 1. Threshold expansion in $\frac{1}{-i\lambda}$ commute with small z^2 expansion.
- 2. Threshold expansion is asymptotic. Resurgence analysis can be performed.
- 3. 'Conspiracy' between Borel singularity of threshold expansion and branch-singularity of $\frac{1}{\ln x}$ for small-x expansion.

Conclusion

- 1. Introduction to coordinate-space analyticity in local QFT.
- 2. Relation ships between TMD soft factors as an application.
- 3. Generalizable to three rapidity regulators implemented simultaneously.
- 4. Space-like structure function in 2D large N Gross-Neveu carefully investigated. Convergence of small z^2 expansion.
- 5. Vacuum condensate contribute even at LP.