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» Part I: Coordinate-space analyticity and time-ordering issue of
TMD soft factors

a) General introduction to coordinate analyticity
b) Euclidean-type parametric representation in perturbation theory

¢c) Equalities between TMD soft factors
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1. TMD soft factor is part of the TMDPDFs for inclusive process,
for example small g7 inclusive Drell-Yan process.

2. Contains information regarding : Collins-Soper
kernel.

3. Defined in non-Fuclidean manner: sums over
But also, as with specific Wilson-line
directions.

4. Isit possible to find Euclidean-type representations? This point
is confusing in literature, but crucial for lattice application.
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» General theory of coordinate space analyticity
1. Axioms: spectral-condition && micro-locality && temperedness of

2. Consequence: existence of in the “permuted extended-tubes”
and totally space-like region.

3. Established in three steps.

= First: Paley-Wiener type arguments for analyticity in the T =
(G 2n_1, . 22); (20, = 2, , ) € =V} Jor WPz, ..23) =
(P (an ¢(ZP1)). Spectral concﬁtion is crucial.

* Second: appl}lrlproper complex Lorentz transforms to analytic-continue W¥
further into the



» Finaly, local-commutativity implies that

tobea analytic Wightman
function in : Union of all the extended tubes.

5. Important sub-regions of analyticity.
* Fuclidean region &, = {(zy, ...21); 2z € —iR,Im(Z; = 0),z; # zj}
= Totally space-like real separations {(xy, ... x1); (x; — xj)2 < 0}

7. W|g, are called Schwinger functions && Euclidean correlation functions.



8. Properties of analytic Wightman functions
» Covariance under proper

= Permutation symmetry && anti-symmetry.
= Spin-statistics && CPT.

9. These properties can be non-trivial: for a complex scalar one

(pT(0)e~HT $(0)) = (p(0)e~HT$T(0)).

This is an operator relation that



10. Relation to real-time Wightman distributions. One can obtain real-time
Wightman distribution as boundary-values of analytic Wightman functions.

11. The
(D(tn).- P(t1)) = nli%l,, W(t, — inney, ..., t, — inet).
= One approaches the boundary point within the forward tube T,,.
= For invariant lengths, W-prescription means —xizj + inx?j.
12. The Feynman-prescription
(T§(tn).. $(t0) = lim, W(ta(L = in), .., ts(1 = i)

= For invariant lengths, F-prescription means —xizj + in.



» How to realize?

1. Non-perturbative level. Osterwalder-Schrader reconstruction theorem.
Distributions in the Euclidean regions &,, that are rotational invariant,
reflective-positive and grow moderately in n are Schwinger functions of a
Wightman QFT and can be uniquely continued back to real time.

2. Schwinger functions can be obtained as of lattice models
approaching critical points. (6(r§)0(0))s00 = Z(§) Many examples
in 2D. Conjectured for QCD.

3. Short distance limit: f(r) = zLd(l +rinr+--).
UV of IR - IR of UV.

4. CFTs are the “simplest” Wightman QFTs. Global (Hilbert space and
operator algebra) from UV-asymptotics of local-correlators (OPE).



* Momentum space analyticity in DR perturbation theory.

1. Analyticity in perturbation theory are again due to exponential decay in
parametric representations.

2. In momentum space, quantities allow Schwinger-
parametrization of the form |, O°° Da F (a)eQzP (@) where P(a) > 0 are
rational functions.

3. They can be continued to the region Re(Q?) < 0.

» Similarly, in coordinate space for n-point function, one has parametric
o .. x2.P:.
integrals of the forms I = [~ U () eZi<i *iPii(®) for



» Consider parametric integrals I = fooo U(a)eZi<i* iiP1j(@),
1. The rational functions P;;(a) are positive.

2. The P;j(a) allows explicit representations through spanning trees and
connected paths between i and j.

3. Only depends on invariant length-squares xlzj = (x; — xj)z.

4. Defines analytic function in E =
{(zn, wZq); Re(zizj) <0,Vi ;&j}.

5. Agrees with spectral representation in £, N T for any P. This is because
that &, N T is path-connected and contains €, N TY .



» For QCD perturbation theory in covariant gauges (Feynman gauge for
example). Spectral condition and local commutativity are satisfied for gluon

fields, to all orders.

» Below threshold representation for gluonic correlators exist in Fuclidean and
totally space-like real points.

» Thus, one has below threshold representation for gluonic Wightman
functions in the below-threshold region &, = {(zn, wZq); Re(zizj) <0 Vi#



* One application of the above is to establish the below-threshold
representation for Drell-Yan TMD soft factor in the exponential regulator.

= S(by,v,€) = Nic(Tr T Uﬁn(l_J)J_ — ive,)T Up7(0))

» Up,n(x) is a Wilson-line cusp at x, formed by past-pointing gauge-links in
light-like directions n = % (e +e,)andn = % (e —e,).v > 0isthe

exponential regulator. b, is the transverse separation.

» The Wilson-loop can be expanded in terms of the gluonic Wightman
functions picked-up from the Wilson-loops. Wightman prescriptions are
used for the T and T from analytic Wightman functions.
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» To see it these analytic Wightman functions allow below-threshold
representations, one needs to check the invariant length-squares. There are

four types.

1. Two points under the same T or T, on different Wilson-line. xj’i j=
— 2;A; < 0. Space-like.

2. One point from T, another from T, on same Wilson-line direction. xéi j=

—vZ — b} — V2iv(A} — A}). Below-threshold.

3. One point from T, another from T, on different Wilson-line directions.
x;; = —v? — b} — 22{AF — V2iv(A} — Af). Below-threshold.



4. Two points on the same Wilson-line. This is tricky since null-separation is

encountered. But the in solves the problem.

5. (An—An— i17et)2 = —n? —V2in(4; — 4).

» Thus, below-threshold representation exists.

= Furthermore, the 71s can be send to zero from the beginning for three reasons.

L

51;6: anz regulates UV-light-cone divergences, which are regulated by the DR
eady.

The in terms always have the same signs within the T and T groups as the iv
terms. Thus, ins are replaced by the ivs.

The —n?, in terms are added to terms with negative real parts that never vanish in
the integration region.



= Thus, we conclude that the DY TMD soft-factor allows below-threshold
representations in terms of three invariant lengths:

1 x3;i = —2M;A

2. xj;;=—-v?—b}—V2iv(a} - 2D
3. xt;=—v:— bl - 2272 —V2iv(A} — AD)

» Asfarasv # 0 and € # 0, gluonic Wightman functions restricted to these
separations are still covariant and permutation-symmetric.

» For v = 0, naive invariant lengths for the DY-shape TMD soft factors. Can be
used for the (non-gauge-invariant) é regulator.



» The existence of below-threshold representation can be used to establish
certain identities.

» Consider S;(b,,v,€) = Nic (Tr TO} (b, —ve,)U,(0)).

1. Here U,7(0) is a Wilson-line cusp with future-pointing light-like link in 71
directions.

2. Opverall time-ordering.

3. A quark-anti-quark pair in n direction moving from past to t = 0, then
transits to another pair in 71 propagating to future. Space-like form factor.

4., —ve, inthe e, direction.
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* One can show that S = S; based on Minkowskian parametric
representations of S;.

» The M-parametric representations of S, after , become exactly
the below-threshold representations for S.

» Thus, the DY-TMD soft factor can be represented as a



* We can conjecture the following:
» For any closed complex-space-time valued oriented loop C, if

1. The loop is piece-wisely smooth with finite-numbers of cusp singularities
with finite cusp angles.

2. An arbitrary non-coinciding set of points picked up from C always lives in
the natural coordinate-space analyticity region (such as permuted -
extended -tubes).

» Then the analytic Wilson-loop average (W (C)) exists and behave like the
analytic Wightman functions in the analyticity region.



» The analytic Wilson-loop average (TrW (C)) depends only on the € and the
orientation.

» IfC = C; UC, U C3..Cp with C; N G = @. Then (TrW (C)) = (TrW (CF))
where ¥ = Cp, U Cp, U Cp,..C p,. This plays the role of local-commutativity.

» For small Wilson-loop sizes, (TrW (C)) allows perturbative expansion in
terms of the perturbative gluonic Wightman functions.

» Analytic Wilson-loops leads to analytic Wightman functions of gauge-
invariant operators such as tr FZ, if one performs small size OPE for the
Wilson-loops.
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The Wilson-lines for S can be deformed tigure:h:;The o
to spafze/]jke directions without The Wilson-lines for S; can be deformed
changing the below-threshold property to time-like directions without changing

the below-threshold property



= Given the above, one can define TMD soft factors that contains three
regulators at once: off-light-cone, finite LF-length and exponential.

1. S¢(Ty,T,, b, v,_)Y, €): still a “real-time” Wilson-loop with ““transverse”
gauge linksin b, — ve, directions.
= S, is defined with time-like links withv =n+e Ynnandv' =nn+ e 'n.
Resembles the heavy-quark form factor in the 2019 Ji-Liu-Liu paper.

» Time-ordering: T; = T; (1 — in) and T, = T, (1 — in). Can be analytically
cgntinued smoothly to Euclidean times T; = —iL™ and T, = —iL* where
L* > 0.

2. S(L*,L~, by, v,_¥, €): a complex-valued Wilson-loop with “transverse”
gauge-links in b, — ive, direction.



Y

= Sis defined with space-likelinksinny =n—e™" i and iy =fi— e~ 'n.

Resembles the Collins off-light-cone TMD-soft factor.

= All underlying separations for S(L*, L™, b,,v, Y, €) are below-threshold. No
null separations at all.

3. Complex Lorentz transtorm : A(t, z) = (iz, it), or A(e;, e;) = (ieg, iep).
= Under A,v = iny, v’ - —i Ny and —ve, = —ive;.

= The Wilson-loop for S;(—iL~, —iL",b,,v, Y, €) maps exactly to the Wilson-
loop for S(L*, L™, b,,v,Y, €) under the A.

4. Thus, one has the master equality



L

The relations above implies that the rapidity evolution kernel for TMDPDFs
and for LFEWFs are same : S; is the natural soft factor for LFWFs.

The renormalization are multiplicative,
Three standard orders of limits

Y — oo first, L* — oo second gives the exponential regulator.

2. Y - oofirst, v = 0 second gives the finite LF length regulator.

3. v - 0,L* - oo first at finite Y gives the off-light-cone regulator.

Another possibility, keep L* and v finite, is it possible that Y — oo and € — 0 are
related to each-other perturbatively ?
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= Consider the 2D Gross Neveu in large N. £ = iy - 0P — o ¢ 2
0

1. LargeN expansmn Condensate o = m (fermion mass). Running coupling
1 p?
g an m2

2. Large N expansion can be performed systematically using effective coupling

21 (00 c+ico dt ds T(1-2s)(s+t) f m2\ ">
) =50 Jocieo 5 ostD (_kz) . The propagator for o — m.

2\ N
3. Large k? expansion: shifts to s = —n — t. Borel-integrals at power (";{2) .
Marginality manifest.



= Define the “twist-three-type” correlator £(z%m?, D)u(p)u(p) =

(0, 1[P* COP* (X)|p, i) — (v, i| P’ ()P’ (X)|p, i),
1. z? = —x?% > 0 space-like and A = —p - x. Analyticity in A in whole complex plane.

2. We calculate £(z%m?, 1) to NLO in % One-bubble-chain diagrams.
3 EM(zZ2m?,2) = 2F”e‘”‘(—Fl + F, — F3)(z2m?, ).

4. Bjorken limit z% — 0 at fixed A. Exact twist-expansion.



» Hard functions and non-perturbative functions.

L Ry 3) = 52, (22 [ dt g (62,0 +
o (S2) £ de B0 (S20)' ((£25) 962 ) + o200

2. Borel integrands H. p (t, A, u) contains renormalon singularity at t = n that
cancels with the smgularlty of ql PIR (¢, A, 1).

3. The u dependency cancels between H'? and qi’p forp = 1.

4. For p = 0, u dependency cancels between g, )(t A p) and HL0. q7° =

5. qW(t, A, p) contains no Borel singularity at t > 0.



» Operator content. There are four quark operator even at LP.

1. The “Hard function” at LP reads

Nk o Ll e g AL i

HO(E, a(2),A) = <f1F1<2.1.—,\)+< 4" > F(—f)lFl(Q.l—'rz‘.—/\))
O 222\’ 5 e

+?_<71FM22~<M%-< ; )11—01FM22+¢,<M>.

2. The first-line: explained by the operators i

3. Second line: explained by the four-quark operators

l H -~ \ . _.‘\—)>{I/1 ﬁ;}/ln} '
7 ’/((‘( -)L,I’I”.JIIHI ] ( " ( { ]
/.

1 = =7 -
2 ) Ve ; .y WL M " Hrt15 oy .alyaly
”!}{”(“(”))INIJNQ””Iﬂn+1Li;{/1()lQH.()In+1}L,LL
n=0



4. Due to the fact that g2(Py) = —m(1 + 0 (%)) The contributions from

~C

. [ ’l ¢ l'.f / Il+l %4 ] '
”'Hn x| )’/:1 g el Vi '{/ G2, ., G }(,( l
n=~0u

are non-vanishing at the order = ~ . Namely, ,, is of order g > while

(Y1) is of order N.

= Thus, vacuum condensates start to contribute even at the leading
pOwer.

= AtNLP (0 (szz)) there are up to eight quark operators
Pyt (@) @y)°.

= Parton picture is non-longer convenient.



» The small-z# expansion, in terms of the Borel/resumed hard and
“collinear” functions, converges absolutely for any z% < 0.

= No instanton-like contributions in the coefficient functions.

» The threshold expansion A — +ioco can also be performed exactly.

- .. 1 - .
1. Threshold expansion in — commute with sma. z? expansion.

2. Threshold expansion is asymptotic. Resurgence analysis can be
performed.

3. “Conspiracy” between Borel singularity of threshold expansion and
branch-singularity of — — for small-x expansion.



Introduction to coordinate-space analyticity in local QFT.
. Relation ships between TMD soft factors as an application.

. Generalizable to three rapidity regulators implemented
simultaneously.

. Space-like structure function in 2D large N Gross-Neveu carefully

investigated. Convergence of small z% expansion.

. Vacuum condensate contribute even at LP.



