Confronting neutrino mixing schemes with correlations of neutrino oscillation data

Szymon Zięba

University of Silesia in Katowice

Based on arXiv:2310.20681, arXiv:2403.13966

and

arXiv:24xx.xxxx work in progress

2PiNTS, Kraków

September 12, 2024

Neutrino mixing: 3ν

Neutrino flavor and mass eigenstates are related by

$$|\nu_{\alpha}\rangle = U_{\alpha i} |\nu_i\rangle$$

Pontecorvo-Maki-Nakagawa-Sakata parametrization of mixing matrix

$$\mathbf{U}_{\rm PMNS} = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{i\delta} \\ s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{s3} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{bmatrix} \begin{bmatrix} e^{i\alpha_1} & 0 & 0 \\ 0 & e^{i\alpha_2} & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

where
$$c_{ij} \equiv \cos \theta_{ij}$$
, $s_{ij} \equiv \sin \theta_{ij}$, $\delta \equiv \delta_{\rm CP}$.

Mathematica output

Mass ordering: $m_0 = m_{lightest}$

BM, TB, GR, HG, $\theta_{13} = 0$, early 2010s, (pre)history

$$U_{\rm PMNS} = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{i\delta} \\ s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{53} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{bmatrix}$$
$$\theta_{13} = 0^{\circ} \qquad \downarrow \qquad \theta_{23} = 45^{\circ}$$
$$U_{0} = \begin{bmatrix} c_{12} & s_{12} & 0 \\ -\frac{s_{12}}{\sqrt{2}} & \frac{c_{12}}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{s_{12}}{\sqrt{2}} & \frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$\theta_{12} = 45^{\circ}, \ s_{12} = 1/\sqrt{2} \qquad \theta_{12} = 35, 26^{\circ}, \ s_{12} = 1/\sqrt{3} \qquad \theta_{12} = 31, 7^{\circ} \qquad \theta_{12} = 30^{\circ}, \ s_{12} = 1/2 \\ \begin{array}{c} \text{Bimaximal Mixing} \\ \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \\ \end{bmatrix} \qquad \begin{bmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \end{bmatrix} \qquad \begin{bmatrix} \frac{\varphi}{\sqrt{2+\varphi}} & \frac{1}{\sqrt{2+\varphi}} & 0 \\ -\frac{1}{\sqrt{4+2\varphi}} & \frac{1}{\sqrt{4+2\varphi}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{4+2\varphi}} & \frac{1}{\sqrt{4+2\varphi}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{2\sqrt{2}} & \frac{\sqrt{3}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{2\sqrt{2}} & \frac{\sqrt{3}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \end{array}$$

∜

Golden Ratio Mixing: tg $\theta_{12}=1/\varphi$, $~\varphi=(1+\sqrt{5})/2$ being the golden ratio.

Based on Biswajit Karmakar talk, link here.

$\theta_{13} \neq 0$, Daya Bay, RENO (2012)

BM, TB, GR, HG disfavored by non-zero θ_{13} .

Non-zero θ_{13} : Successors of tribimaximal mixing

$$\mathbf{U}_{\mathrm{TBM}} = \begin{bmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{bmatrix}, \qquad \mathbf{U}_{\mathrm{PMNS}} \simeq \begin{bmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0.15\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{bmatrix},$$

$$\mathbf{U}_{\mathrm{TBM}} = \begin{bmatrix} \frac{2}{\sqrt{6}} & * & *\\ \frac{1}{\sqrt{6}} & * & *\\ \frac{1}{\sqrt{6}} & * & * \end{bmatrix}, \qquad |\mathbf{U}_{\mathrm{TM}_1}| = \begin{bmatrix} \frac{2}{\sqrt{6}} & * & *\\ \frac{1}{\sqrt{6}} & * & *\\ \frac{1}{\sqrt{6}} & * & * \end{bmatrix}, \qquad |\mathbf{U}_{\mathrm{TM}_2}| = \begin{bmatrix} * & \frac{1}{\sqrt{3}} & *\\ * & \frac{1}{\sqrt{3}} & *\\ * & \frac{1}{\sqrt{3}} & *\\ * & \frac{1}{\sqrt{3}} & * \end{bmatrix},$$

$$\mathbf{U}_{\mathrm{TM}_{1}} = \begin{bmatrix} \frac{2}{\sqrt{6}} & \frac{c_{\theta}}{\sqrt{3}} & \frac{s_{\theta}}{\sqrt{3}} e^{-i\gamma} \\ -\frac{1}{\sqrt{6}} & \frac{c_{\theta}}{\sqrt{3}} - \frac{s_{\theta}}{\sqrt{2}} e^{i\gamma} & -\frac{s_{\theta}}{\sqrt{3}} e^{-i\gamma} - \frac{c_{\theta}}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{c_{\theta}}{\sqrt{3}} - \frac{s_{\theta}}{\sqrt{2}} e^{i\gamma} & -\frac{s_{\theta}}{\sqrt{3}} e^{-i\gamma} + \frac{c_{\theta}}{\sqrt{2}} \end{bmatrix},$$

$$\mathbf{U}_{\mathrm{TM}_{2}} = \begin{bmatrix} -\frac{c_{\theta}}{\sqrt{6}} + \frac{\sqrt{5}}{\sqrt{2}} \mathbf{e}^{i\gamma} & \frac{\sqrt{3}}{\sqrt{3}} & -\frac{s_{\theta}}{\sqrt{6}} \mathbf{e}^{-i\gamma} - \frac{c_{\theta}}{\sqrt{2}} \\ -\frac{c_{\theta}}{\sqrt{6}} + \frac{s_{\phi}}{\sqrt{2}} \mathbf{e}^{i\gamma} & \frac{1}{\sqrt{3}} & -\frac{s_{\theta}}{\sqrt{2}} \mathbf{e}^{-i\gamma} + \frac{c_{\theta}}{\sqrt{2}} \end{bmatrix}.$$

Based on Biswajit Karmakar talk, link here.

6/22

${ m TM_1}$ and ${ m TM_2}$ mixing schemes, partial $\mu- au$ symmetry

Comparing the corresponding elements of the first column of $\rm U_{PMNS}$ and $\rm U_{TM_{1}}.$

$$\begin{split} |\mathbf{U}_{e1}|^2 &= c_{12}^2 c_{13}^2 = 2/3 \qquad : \quad \theta_{12}^{\mathsf{TM}_1}(\theta_{13}) \qquad : \quad s_{12}^2 = \frac{1 - 3s_{13}^2}{3 - 3s_{13}^2}, \\ |\mathbf{U}_{\mu 1}|^2 &= |\mathbf{U}_{\tau 1}|^2 = 1/6 \qquad : \quad \delta_{\mathrm{CP}}^{\mathsf{TM}_1}(\theta_{13}, \theta_{23}) \qquad : \quad \cos \delta_{\mathrm{CP}} = \frac{(1 - 5s_{13}^2)(2s_{23}^2 - 1)}{4s_{13}s_{23}\sqrt{2(1 - 3s_{13}^2)(1 - s_{23}^2)}}. \end{split}$$

Comparing the corresponding elements of the second column of U_{PMNS} and U_{TM_2} .

$$\begin{split} |\mathbf{U}_{e2}|^2 &= s_{12}^2 c_{13}^2 = 1/3 \qquad : \quad \theta_{12}^{\mathsf{TM}_2}(\theta_{13}) \qquad : \quad s_{12}^2 = \frac{1}{3 - 3s_{13}^2}, \\ |\mathbf{U}_{\mu 2}|^2 &= |\mathbf{U}_{\tau 2}|^2 = 1/3 \qquad : \quad \delta_{\mathrm{CP}}^{\mathsf{TM}_2}(\theta_{13}, \theta_{23}) \qquad : \quad \cos \delta_{\mathrm{CP}} = -\frac{(2 - 4s_{13}^2)(2s_{23}^2 - 1)}{4s_{13}s_{23}\sqrt{(2 - 3s_{13}^2)(1 - s_{23}^2)}}. \end{split}$$

In partial μ - τ reflection symmetry, the mixing matrix symmetry is given by:

$$\begin{aligned} |U_{\mu1}| &= |U_{\tau1}| \quad (\mu1 - \tau1) \quad : \quad \delta_{\mathrm{CP}}^{\mu1 - \tau1}(\theta_{13}, \theta_{12}, \theta_{23}) \quad : \quad \cos\delta_{\mathrm{CP}} = \frac{(c_{23}^2 - s_{23}^2)(c_{12}^2 s_{13}^2 - s_{12}^2)}{4c_{12}s_{12}c_{23}s_{23}s_{13}}, \\ |U_{\mu2}| &= |U_{\tau2}| \quad (\mu2 - \tau2) \quad : \quad \delta_{\mathrm{CP}}^{\mu2 - \tau2}(\theta_{13}, \theta_{12}, \theta_{23}) \quad : \quad \cos\delta_{\mathrm{CP}} = \frac{(c_{23}^2 - s_{23}^2)(c_{12}^2 - s_{12}^2 s_{13}^2)}{4c_{12}s_{12}c_{23}s_{23}s_{13}}. \end{aligned}$$

How to confront the mixing schemes with experimental data ?

Progress and prospects for precision of oscillation data

$$\theta_{13} \neq 0$$
 (!), $\delta_{\rm CP} \neq 0$ (?), $\theta_{23} > \pi/4$ or $\theta_{23} < \pi/4$ (??).

Prospects for progress in precision.

8/22

NuFIT 5.2 (2022) vs NuFIT 5.3 (2024)

NuFIT 5.3 (2024)

NuFIT 5.2 (2022)

					_					And the second s	
_		Normal Ore	lering (best fit)	Inverted Ordering ($\Delta \chi^2 = 2.3$)				Normal Ordering (best fit)		Inverted Ordering ($\Delta \chi^2 = 2.3$)	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	without SK atmospheric data		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
~	$\sin^2 \theta_{12}$	$0.303^{+0.012}_{-0.011}$	$0.270 \rightarrow 0.341$	$0.303^{+0.012}_{-0.011}$	$0.270 \rightarrow 0.341$		$\sin^2 \theta_{12}$	$0.307^{+0.012}_{-0.011}$	$0.275 \rightarrow 0.344$	$0.307^{+0.012}_{-0.011}$	$0.275 \rightarrow 0.344$
without SK atmospheric data	$\theta_{12}/^{\circ}$	$33.41^{+0.75}_{-0.72}$	$31.31 \rightarrow 35.74$	$33.41^{+0.75}_{-0.72}$	$31.31 \rightarrow 35.74$		$\theta_{12}/^{\circ}$	$33.66^{+0.73}_{-0.70}$	$31.60 \rightarrow 35.94$	$33.67^{+0.73}_{-0.71}$	$31.61 \rightarrow 35.94$
	$\sin^2 \theta_{23}$	$0.572^{+0.018}_{-0.023}$	$0.406 \rightarrow 0.620$	$0.578^{+0.016}_{-0.021}$	$0.412 \rightarrow 0.623$		$\sin^2 \theta_{23}$	$0.572^{+0.018}_{-0.023}$	$0.407 \rightarrow 0.620$	$0.578^{+0.016}_{-0.021}$	$0.412 \rightarrow 0.623$
	$\theta_{23}/^{\circ}$	$49.1^{+1.0}_{-1.3}$	$39.6 \rightarrow 51.9$	$49.5^{+0.9}_{-1.2}$	$39.9 \rightarrow 52.1$		$\theta_{23}/^{\circ}$	$49.1^{+1.0}_{-1.3}$	$39.6 \rightarrow 51.9$	$49.5^{+0.9}_{-1.2}$	$39.9 \rightarrow 52.1$
	$\sin^2 \theta_{13}$	$0.02203\substack{+0.00056\\-0.00059}$	$0.02029 \to 0.02391$	$0.02219\substack{+0.00060\\-0.00057}$	$0.02047 \to 0.02396$		$\sin^2 \theta_{13}$	$0.02203\substack{+0.00056\\-0.00058}$	$0.02029 \to 0.02391$	$0.02219\substack{+0.00059\\-0.00057}$	$0.02047 \to 0.02396$
	$\theta_{13}/^{\circ}$	$8.54_{-0.12}^{+0.11}$	$8.19 \rightarrow 8.89$	$8.57^{+0.12}_{-0.11}$	$8.23 \rightarrow 8.90$		$\theta_{13}/^{\circ}$	$8.54_{-0.11}^{+0.11}$	$8.19 \rightarrow 8.89$	$8.57^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.90$
	$\delta_{\rm CP}/^{\circ}$	197^{+42}_{-25}	$108 \to 404$	286^{+27}_{-32}	$192 \to 360$		$\delta_{\rm CP}/^{\circ}$	197^{+41}_{-25}	$108 \to 404$	286^{+27}_{-32}	$192 \to 360$
	$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.41\substack{+0.21 \\ -0.20}$	$6.82 \rightarrow 8.03$	$7.41\substack{+0.21\\-0.20}$	$6.82 \rightarrow 8.03$		$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.41\substack{+0.21 \\ -0.20}$	$6.81 \rightarrow 8.03$	$7.41\substack{+0.21\\-0.20}$	$6.81 \rightarrow 8.03$
	$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$	$+2.511\substack{+0.028\\-0.027}$	$+2.428 \rightarrow +2.597$	$-2.498\substack{+0.032\\-0.025}$	$-2.581 \rightarrow -2.408$		$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$	$+2.511\substack{+0.027\\-0.027}$	$+2.428 \rightarrow +2.597$	$-2.498\substack{+0.032\\-0.024}$	$-2.581 \rightarrow -2.409$
		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 6.4)$				Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 9.1)$	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range			bfp $\pm 1\sigma$	3σ range	btp $\pm 1\sigma$	3σ range
	$\sin^2 \theta_{12}$	$0.303^{+0.012}_{-0.012}$	$0.270 \rightarrow 0.341$	$0.303^{+0.012}_{-0.011}$	$0.270 \rightarrow 0.341$	with SK atmospheric data	$\sin^2 \theta_{12}$	$0.307^{+0.012}_{-0.011}$	$0.275 \rightarrow 0.344$	$0.307^{+0.012}_{-0.011}$	$0.275 \rightarrow 0.344$
ata	$\theta_{12}/^{\circ}$	$33.41^{+0.75}_{-0.72}$	$31.31 \rightarrow 35.74$	$33.41^{+0.75}_{-0.72}$	$31.31 \rightarrow 35.74$		$\theta_{12}/^{\circ}$	$33.67^{+0.73}_{-0.71}$	$31.61 \rightarrow 35.94$	$33.67^{+0.73}_{-0.71}$	$31.61 \rightarrow 35.94$
ric d	$\sin^2 \theta_{23}$	$0.451\substack{+0.019\\-0.016}$	$0.408 \rightarrow 0.603$	$0.569^{+0.016}_{-0.021}$	$0.412 \rightarrow 0.613$		$\sin^2 \theta_{23}$	$0.454\substack{+0.019\\-0.016}$	$0.411 \rightarrow 0.606$	$0.568^{+0.016}_{-0.021}$	$0.412 \rightarrow 0.611$
ospho	$\theta_{23}/^{\circ}$	$42.2^{+1.1}_{-0.9}$	$39.7 \rightarrow 51.0$	$49.0^{+1.0}_{-1.2}$	$39.9 \rightarrow 51.5$		$\theta_{23}/^{\circ}$	$42.3^{+1.1}_{-0.9}$	$39.9 \rightarrow 51.1$	$48.9^{+0.9}_{-1.2}$	$39.9 \rightarrow 51.4$
tmc	$\sin^2 \theta_{13}$	$0.02225\substack{+0.00056\\-0.00059}$	$0.02052 \to 0.02398$	$0.02223^{+0.00058}_{-0.00058}$	$0.02048 \to 0.02416$		$\sin^2 \theta_{13}$	$0.02224^{+0.00056}_{-0.00057}$	$0.02047 \to 0.02397$	$0.02222^{+0.00069}_{-0.00057}$	$0.02049 \to 0.02420$
with SK a	$\theta_{13}/^{\circ}$	$8.58^{\pm0.11}_{-0.11}$	$8.23 \rightarrow 8.91$	$8.57\substack{+0.11\\-0.11}$	$8.23 \rightarrow 8.94$		$\theta_{13}/^{\circ}$	$8.58\substack{+0.11 \\ -0.11}$	$8.23 \rightarrow 8.91$	$8.57^{+0.13}_{-0.11}$	$8.23 \rightarrow 8.95$
	$\delta_{\rm CP}/^{\circ}$	232^{+36}_{-26}	$144 \to 350$	276^{+22}_{-29}	$194 \to 344$		$\delta_{\rm CP}/^{\circ}$	232^{+39}_{-25}	$139 \to 350$	273^{+24}_{-26}	$195 \to 342$
	$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.41\substack{+0.21 \\ -0.20}$	$6.82 \rightarrow 8.03$	$7.41\substack{+0.21 \\ -0.20}$	$6.82 \rightarrow 8.03$		$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.41\substack{+0.21 \\ -0.20}$	$6.81 \rightarrow 8.03$	$7.41\substack{+0.21 \\ -0.20}$	$6.81 \rightarrow 8.03$
	$\frac{\Delta m^2_{3\ell}}{10^{-3} \ \mathrm{eV}^2}$	$+2.507\substack{+0.026\\-0.027}$	$+2.427 \rightarrow +2.590$	$-2.486\substack{+0.025\\-0.028}$	$-2.570 \rightarrow -2.406$		$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.505\substack{+0.024\\-0.026}$	$+2.426 \rightarrow +2.586$	$-2.487\substack{+0.027\\-0.024}$	$-2.566 \rightarrow -2.407$

Taken from http://www.nu-fit.org, updated arXiv:2007.14792, Table 3.

Since 2022, increase of NO preference over IO. No noticeable progress in precision for 3σ ranges.

NuFIT tabularized $\Delta \chi^2$ data sets: 1D, 2D, 3D

Available data files

We provide one-, two- and three-dimensional $\Delta\chi^2$ projections for both the analysis without (Normal and Inverted Ordering) and including (Normal and Inverted Ordering) Super-Kamiokande atmospheric data. A description of the content of these files and a summary of the data included in our analysis can be found here.

NO (with SK atm. data, 1D, minimized), $\theta_{23} = 48.7^{\circ}$ at 1.3 σ (2nd local minimum, $\Delta\chi^2 = 1.71$)

IO (with SK atm. data, 1D, minimized), $\theta_{23}=42.4^\circ$ at 0.7 σ (2nd local minimum, $\Delta\chi^2=0.45$) م کر ăΛ 8.2 8.4 8.6 8.8 30 32 36 37.5 40.0 42.5 45.0 47.5 50.0 0 200 300 6.5 7.0 7.5 8.0 -2.60-2.55-2.50-2.45-2.40 34 $\Delta m_{21}^2 / 10^{-5} eV^2$ $\Delta m_{32}^2 / 10^{-3} \text{ eV}^2$ 812 / ° 812 / ° On 1º δcp /° Szymon Zieba (UŚ) September 12, 2024 10 / 22

NuFIT tabularized $\Delta \chi^2$ data sets: 2D correlations

Presented for $\Delta \chi^2 \leq 9$, (with SK atm. data, 2D, minimized). NO (left panel) and IO (right panel). Plots based on NuFIT 5.3 data sets.

NuFIT tabularized $\Delta \chi^2$ data sets: 3D correlation

Presented for $\Delta \chi^2 \leqslant 9$, (with SK atm. data, 3D, minimized). NO (left panel) and IO (right panel). Plots based on NuFIT 5.3 data sets.

Confronting Models with correlations at some $\Delta\chi^2$ level

First, construct $\Delta \chi^2$ function from available (1D, 2D, 3D) correlated data:

$$\begin{split} \mathsf{NO} &: \quad \Delta \chi^2(\theta_{13}, \theta_{12}, \theta_{23}, \delta_{\mathrm{CP}}, \Delta m_{21}^2, \Delta m_{31}^2), \\ \mathsf{IO} &: \quad \Delta \chi^2(\theta_{13}, \theta_{12}, \theta_{23}, \delta_{\mathrm{CP}}, \Delta m_{21}^2, \Delta m_{32}^2), \end{split}$$

Second, insert specific model formulas (model correlations, e.g. TM_1 or TM_2) :

$$\begin{split} & \theta_{12}^{\mathsf{T}\mathsf{M}_{1(2)}}(\theta_{13}), \\ & \delta_{\mathrm{CP}}^{\mathsf{T}\mathsf{M}_{1(2)}}(\theta_{13}, \theta_{12}^{\mathsf{T}\mathsf{M}_{1(2)}}(\theta_{13}), \theta_{23}), \end{split}$$

Third, set $\Delta\chi^2$ level, ($\Delta\chi^2\leqslant$ 9 comparable with table data, can be any)

$$\begin{split} \mathsf{NO} &: \quad \Delta \chi^2(\theta_{13}, \theta_{12}^{\mathsf{TM}_{1(2)}}, \theta_{23}, \delta_{\mathrm{CP}}^{\mathsf{TM}_{1(2)}}, \Delta m_{21}^2, \Delta m_{31}^2) \leqslant 9, \\ \mathsf{IO} &: \quad \Delta \chi^2(\theta_{13}, \theta_{12}^{\mathsf{TM}_{1(2)}}, \theta_{23}, \delta_{\mathrm{CP}}^{\mathsf{TM}_{1(2)}}, \Delta m_{21}^2, \Delta m_{32}^2) \leqslant 9. \end{split}$$

Complete NuFIT 5.3 (2024) with SK atmospheric 1D, 2D, 3D minimized data sets are used in this approach.

$\Delta\chi^2$ function in 3D from NuFIT data 1D vs 2D vs 3D

Here presented for $\Delta \chi^2 \leq 9$, NO (upper panel) and IO (lower panel). Plots based on NuFIT 5.3 data sets with sample intersections.

Intersections of experimental and model correlations

Here presented for $\Delta \chi^2 \leq 9$, NO (left panel) and IO (right panel):

3D projections of 4D intersections for partial $\mu - \tau$ reflection symmetry.

${\rm TM}_1$ and ${\rm TM}_2$ vs partial $\mu - \tau$ reflection symmetry

Partial $\mu - \tau$ reflection symmetry - 2D projections.

$\rm TM_1$ and $\rm TM_2$ - 1D projections

NuFIT, TM_1 and TM_2 - 1D projections.

Here presented for $\Delta \chi^2 \leqslant 9$ (3 σ ranges), NO (upper panel) and IO (lower panel):

TM_1 and TM_2 - preliminary results for m_β

Here presented for $\Delta \chi^2 \leq 9$, (left panel) and IO (right panel):

Effective electron neutrino mass:

$$m_{\beta}^{2} = \frac{\sum_{i} m_{i}^{2} |U_{ei}|^{2}}{\sum_{i} |U_{ei}|^{2}} = \sum_{i} m_{i}^{2} |U_{ei}|^{2} = c_{13}^{2} c_{12}^{2} m_{1}^{2} + c_{13}^{2} s_{12}^{2} m_{2}^{2} + s_{13}^{2} m_{3}^{2}.$$

${ m TM}_1$ and ${ m TM}_2$ - preliminary results for m_{etaeta}

Here presented for $\Delta \chi^2 \leqslant 9$, (left panel) and IO (right panel):

Summary

Multidimensional oscillation parameter correlation data raise the construction and testing of neutrino mixing schemes to a level inaccessible to standard one-dimensional analysis.

With the presented approach, we are able to:

- test models over the full range of parameters at a given $\Delta\chi^2$ level,
- determine model-specific 3σ ranges (and compare with experimental best-fits),
- impose constraints on parameters that are not explicitly present in the mixing schemes (e.g. neutrino masses in TM_1 , TM_2 , partial $\mu \tau$ reflection symmetry),
- find tighter, model-dependent constraints on the effective neutrino masses.

Challenges and limitations:

- NuFIT offers data sets up to 3D,
- the complexity of the problem increases with each additional parameter, and therefore the computational time increases,
- the size of the data sets increases with each additional parameter, which means that the memory requirements also increase.

The method is general and can be applied to any model providing analytical expressions involving the neutrino oscillation parameters.

Thank you for your attention.

$TM_1 \mbox{ and } TM_2 \mbox{ - } 2D \mbox{ projections }$

