¹³⁵Cs/¹³⁷Cs signals from Sellafield reprocessing plant: implications for radiocesium source terms and ¹³⁵Cs inventory in Northern European Seas Tzu-Hao Wang^{1,†}, Franck Dal Molin², Paul Blowers², Hilde E. Heldal³, Jixin Qiao^{1,*} ¹Technical University of Denmark, 4000 Roskilde, Denmark ²Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, NR33 OHT, United Kingdom ³Institute of Marine Research, NO-5817 Bergen, Norway > †e-mail: tzuwa@dtu.dk presenting author *e-mail: jiqi@dtu.dk corresponding author Isotope ratios of ¹³⁵Cs/¹³⁷Cs have recently become a powerful forensic tool for studying major dynamic mechanisms in the environment. The ratios present in natural samples (e.g., soil, sediments, seawater) record a mixed signal from local sources (e.g., Sellafield and La Hague reprocessing plants), regional sources (e.g., Chernobyl) and diffuse sources such as global fallout. To investigate the attribution from different source terms of radiocesium in Northern European Seas, here we present the first time-series of ¹³⁵Cs/¹³⁷Cs isotope ratios from a sediment core collected in the direct vicinity of Sellafield, as well as sediment cores collected from remote locations in the North Sea, Greenland Sea and Lake Geneva (Switzerland-France boundary). By coupling the legacy discharge profile of ¹³⁷Cs from Sellafield with past ¹³⁷Cs monitoring data observed in the adjacent coastal region, we provide a representative ¹³⁵Cs/¹³⁷Cs ratio during the peak discharge of Sellafield and apply it for source term attribution. The preliminary results suggest that traces of radiocesium observed in the sediments from the different studied locations of the North Sea are mainly derived from Sellafield. The sediments from Lake Geneva display distinct ¹³⁵Cs/¹³⁷Cs ratios. The Greenland Sea sediments show generally higher ¹³⁵Cs/¹³⁷Cs ratios implying significant contribution from global fallout, though with larger uncertainties due to its ultralow radiocesium abundance. In this study, we provide a preliminary ¹³⁵Cs inventory in Northern European Seas and demonstrate the utility of ¹³⁵Cs/¹³⁷Cs isotope ratio to disentangle different contamination source terms in Northern European Seas and its potential for future nuclear forensic and environmental tracer studies.