Activity concentration and atomic ratio of man-made actinides determined by a quadrupole mass spectrometry Anna Cwanek^{1,*}, and Kamil Wojciechowski¹ ¹Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Kraków, Poland * e-mail: anna.cwanek@ifj.edu.pl corresponding/presenting author Current practice primarily constrains routine control of the radiological situation to radioisotopes identifiable by gamma spectrometry. Given the potential for the selective release of radioactive contamination, particularly alpha emitters, the existing monitoring strategy may be inadequate for detecting nuclear events. Novel solutions are required to address these challenges. A key recommendation for nationwide and international nuclear safety monitoring networks is to incorporate regular measurements of pure beta and alpha emitters within all environmental contexts. In light of the above concerns, a rapid method was developed and implemented for determining ²³⁶U, ²³⁷Np and ^{239, 240}Pu by the Agilent 8900#100 ICP MS/MS (Agilent Technologies) in conjunction with the Apex IR desolvating nebuliser (Elemental Scientific). Prior to the measurement process, a sequential radiochemical procedure was employed, encompassing ashing at 600 °C, microwave mineralisation and separation on TEVA or UTEVA resins (Triskem International). Radioisotopic standards of ²³⁹Pu, ²⁴²Pu, ²³⁹Pu/²⁴²Pu, ²³³U/²³⁶U and ²³⁶U/²³⁸U (NIST, EC-JRC) were utilised for method calibration, whereas reference materials of IAEA-385 and IAEA-447 (IAEA) were employed for quality assurance purposes. The measurements were conducted in energy discrimination or mass shift modes, using He or O₂ gas in the collision-reaction cell, respectively, to eliminate polyatomic and isobaric interferences. The outcomes of this approach included not only activity concentrations of ²³⁶U, ²³⁷Np, ²³⁹Pu and ²⁴⁰Pu, but also atomic ratios of 236 U/ 238 U, 236 U/ 239 Pu, 237 Np/ 239 Pu and 240 Pu/ 239 Pu. The LOD level was calculated to be equivalent to a few femtograms of the radionuclides examined.