The Effect of Radon-222 Escape on ²¹⁰Pb-Based Sediment Chronology: Implications for Dating Accuracy in Lacustrine Systems

Robert-Csaba Begy^{1,2}, Adrienn Németi¹, János Korponai³, Enikő Katalin Magyari⁴

¹Faculty of Environmental Science and Engineering, "Babeş-Bolyai" University, Cluj-Napoca, Romania ²Interdisciplinary Research Institute on Bio-Nano-Science, Babeş-Bolyai University, Cluj-Napoca, Romania ³National University of Public Service, Baja, Hungary

⁴Department of Environmental and Landscape Geography at Eötös Lóránd University, Budapest, Hungary

* e-mail: robert.begy@ubbcluj.ro corresponding/presenting author

The radiochronology method applied to investigate changes in lake ecosystems over the past 150 years is based on the ²¹⁰Pb isotope from the ²³⁸U decay series. When using this method, measurable variations in the concentration of ²¹⁰Pb deposited from the atmosphere into lake sediments indicate the age of sediment layers (excess ²¹⁰Pb). However, the measured ²¹⁰Pb activity also includes the in situ produced ²¹⁰Pb generated by ²²⁶Ra present in the sediment, assumed to be in equilibrium. In analytical calculations, the atmospheric ²¹⁰Pb inventory is determined by subtracting the ²²⁶Ra concentration from the total measured ²¹⁰Pb. This concept is only valid if the system is considered closed and the gaseous intermediate decay product, ²²²Rn, does not escape from the sediment layers. This assumption holds true mainly for systems with rapid sedimentation, where diffusion distances from the pore space are short. In such cases, radon loss is confined to the topmost centimeter, which does not significantly affect dating accuracy. However, in systems where sedimentation is slow and organic matter content is high, the sediment cannot be regarded as a closed system regarding gas escape.

The present study examined this issue in the sediments of Lake Balaton (Hungary) and two Romanian lakes, Lake St. Anna and Red Lake (Gyilkos). These lakes were selected deliberately: Balaton and Saint Anna are both characterized by low sedimentation rates due to their specific depositional mechanisms. Lake Balaton's catchment area contains rocks with high ²²⁶Ra content. In contrast, Lake St. Anna receives water solely from precipitation, with no inflows, and its upper 10 cm sediment layer has high water content. Meanwhile, Red Lake features higher sedimentation rates and more compact sediments. Thus, these three sites, with differing sediment characteristics, demonstrate that the observed phenomenon is not local but more widespread. We hypothesize that ²²²Rn gas escapes from these systems, leading to modified dating results. To test this, we measured radon concentrations in sediment pore water using liquid scintillation counting, taking advantage of its low detection limits. In Lake Balaton's sediment, radionuclide distributions indicate elevated ²²⁶Ra levels ranging between 25 and 55 Bq/kg. If this enhanced ²²⁶Ra activity is directly used in dating calculations, the dating horizon would appear at only 10 cm depth, which contradicts other independent sedimentation measurements. The pore water ²²²Rn concentration profiles confirmed significant radon loss within the upper 30 cm of the sediment column, with values ranging from 3 ± 0.2 to 37 ± 4 Bq/l. This loss is attributed to the high porosity (70-90%) and low sedimentation rate. In Lake St. Anna, radon concentrations ranged from 0.2 \pm 0.01 to 3 \pm 0.2 Bq/l, corresponding to its lower average ²²⁶Ra content (around 25 Bq/kg). For Red Lake, values ranged from 2 ± 0.2 to 28 ± 4 Bq/l, with ²²⁶Ra content averaging around 35 Bq/kg—lower than that of Balaton sediments. The radon loss and transport processes can

Our results clearly show that a significant portion of radon escapes from the upper sediment layers, causing a disequilibrium. Consequently, the sediments of Lake Balaton, Lake St. Anna, and Red Lake cannot be regarded as closed systems concerning radon gas. As a result, this research demonstrates that pore water analysis is crucial for reliable ²¹⁰Pb dating, especially in systems with slow sedimentation and high porosity accumulated over the last 150 years.

be described by a multivariable differential equation.