Study of beauty to charm hadron decays and proton-proton collision reconstruction at LHCb experiment

Maciej Giza

Supervisors: Prof. Mariusz Witek PhD Agnieszka Dziurda

III year's KISD Students Seminar

 $\langle | S | \rangle$

May 10th 2024

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Covered topics:

Motivation

- Why is there more matter than antimatter in the Universe?
- What is the CP invariance?
- What is the LHCb experiment?
- What have I actually been working on so far?
 - $\Lambda_b^0 \to D_s^- p$ decay analysis
 - First observation and branching fraction measurement of the $\Lambda_b^0 \rightarrow D_s^- p$ decay
 - Published in JHEP: https://doi.org/10.1007/JHEP07(2023)075
 - Proton-proton collisions monitoring
 - PV & RTA groups
 - $\blacktriangleright \quad B \to DX \text{ decays analysis}$
 - the Early Measurements Run3 working group
- Summary and future plans

10/05/2024 4/33

Why is there more matter than antimatter in the Universe?

Figure: Andrei Sakharov

The Sakharov conditions!

- there must be phases of the expansion without thermodynamic equilibrium
- there must be an interaction violating the conservation of baryon number
- there must be an interaction violating the CP invariance

What is the CP invariance?

The C transformation

- ► the **particle**-antiparticle conjugation *C* transforms the field ϕ of the particle into a related field ϕ^{\dagger} which has **opposite quantum numbers**: the charge, lepton number, baryon number, strangeness, beauty, etc., for the antiparticle are opposite in sign to the values for the particle
- invariance under the C transformation is always valid in the strong and electromagnetic interactions
- the visible spectral lines from atoms and their antiatom partners are identical, and we cannot use these lines to identify antimatter in the Universe

What is the CP invariance?

The P transformation

Alice in Wonderland (1951) Walt Disney Productions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへで

CP is (slightly) broken in weak interactions!

Maciej Giza

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

8/33

Study of beauty to charm hadron decays and proton-proton collision reconstruction at LHCb experiment

10/05/2024 9/33

operational for Run1 and Run2

Weak interactions - CKM matrix - quark mixing!

Maciej Giza

(日)

First observation and branching fraction measurement of the $\Lambda_b^0 \rightarrow D_s^- p$ decay

First observation and branching fraction measurement of the $\Lambda_b^0 \rightarrow D_s^- p$ decay

observation

we see this decay in our data in non-negligible yield

First observation and branching fraction measurement of the $\Lambda_b^0 \rightarrow D_s^- p$ decay

branching fraction

the fraction of particles which decay by an individual decay mode (here: $D_s^- p$) with respect to the total number of particles which decay (here: Λ_b^0)

Maciej Giza

・ロト・西ト・ボル・メロト 山下 うくの

First observation and branching fraction measurement of the $\Lambda_b^0 \rightarrow D_s^- p$ decay

Why the $\Lambda_b^0 \rightarrow D_s^- p$?

- the $\Lambda_b^0 \rightarrow D_s^- p$ decay constitutes a background to other analysis
 - ▶ the study of *CP* violation with $B_s^0 \to D_s^{\mp} K^{\pm}$ decays (with $\Lambda_b^0 \to D_s^{-} p$ one of the contributing backgrounds in the signal region)

Maciej Giza

・

Weak interactions - CKM matrix - quark mixing!

Why the $\Lambda_b^0 \rightarrow D_s^- p$?

• $\mathcal{B}(\Lambda_b^0 \to D_s^- p) \propto |V_{ub}|^2$ • V_{ub} - a CKM matrix element

 $\Lambda^0_{\rm h} \rightarrow D_{\rm s}^- p$

◆●◆▲□◆▲□◆▲□◆▲□◆

Weak interactions - CKM matrix - quark mixing!

Why the $\Lambda_b^0 \rightarrow D_s^- p$?

• $\mathcal{B}(\Lambda_b^0 \to D_s^- p) \propto |V_{ub}|^2$ • V_{ub} - a CKM matrix element

How did we do it? (I'm omitting a lot here!)

The general idea

- Using data, not MC samples!
 - the data-driven approach to calculate the contributions from the $B_s^0 \rightarrow D_s^{\pm} h^{\pm}$

Control samples

Normalisation sample

$$\Lambda_b^0 \to \bar{\Lambda}_c^- \pi^+$$

$\Lambda_b^0 \rightarrow D_s^- p$ decay analysis:

- Modelling of the signal and background shapes for the decays
- Invariant mass fits
- Systematic studies
- Validation

PID from RICH helps a lot!

Figure: The $m(D_s^-p)$ invariant-mass distributions after the full selection without the PID requirement on the companion track (filled area) and passing (circles) or failing (squares) this selection. Maciej Giza

Results

evious estimatio	ns (from F	PDG):			
$_{5}$ pD_{s}^{-}			$< 4.8 imes 10^{-4}$	CL=90%	2364
$\Gamma(\ \Lambda_b^0 o p D_s^- \) / \Gamma_{ m total}$				Γ	5/Г —
VALUE	Cl%	DOCUMENT ID	TECN	COMMENT	
$< 4.8 imes 10^{-4}$	90	AAIJ	2014Q LHCB	pp at 7 TeV	
References:					
AAIJ 2014Q JHEP 1404 C	087 Searches for Λ^0_b of the $\Lambda^0_b o K_b$	0_b and $arepsilon^0_b$ Decays to $K_S^0 \; p \pi^-$ Decay	$^0_S \ p\pi^-$ and $K^0_S \ pK^-$ Fi	nal States with First Ob	servation

◆□ > < @ > < E > < E > E = 9000

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-EP-2022-272 LHCb-PAPER-2022-038 3 February 2023

 $\mathcal{B}(\Lambda_b^0 \to D_s^- p) = (12.6 \pm 0.5 \pm 0.3 \pm 1.2) \times 10^{-6}$

- I'm the contact author of this analysis!
- The results have been shown on the EPIPHANY conference in 2023!

First observation and branching fraction measurement of the $A_b^0 \rightarrow D_s^- p$ decay

LHCb collaboration

Abstract

The first observation of the $A_{1}^{0} \rightarrow D, p$ decay is presented using proton-proton collision data called by the HLGC experiment at a curve-of-mass energy of $\sqrt{s} - 131 \, \mathrm{Me}_{2}$ or every solution of the $A_{1}^{0} \rightarrow A_{1}^{0} \rightarrow B_{2}^{0} \rightarrow B_{2}^{0}$

Our result:

LHCb Upgrade II

- New possibilities!
- • • but also, new challenges!
- Need for new checks on fresh data, updates on fast online monitoring and tuning!

Framework TDR for the LHCb Upgrade II: Opportunities in flavour physics, and beyond, ir

the HL-LHC era

Maciej Giza

・

Decay at LHCb (beauty to charm)

10/05/2024 28/33

Vertex Locator

Inspecting the alignment (top); a fully assembled detector half (bottom left); and wire bonding of the ASICs to the front-end hybrids (bottom right). Credits: M. Milovanovic; McCoy Wynne; STFC/A O'Connor

VELO's voyage into the unknown, CERN

Courier, May 2022

Maciej Giza

・ 三国 のへで

Vertex Locator

Milling the solid aluminium block (left), and the completed RF foils in the closed position (right). Credit: M. Kraan

VELO's voyage into the unknown, CERN Courier, May 2022

Maciej Giza

Proton-proton collisions monitoring:

- ▶ in 2022/2023 I started working for the LHCb Real-Time Analysis Project (RTA)
 - development and sustaining central software
 - monitoring and optimization of proton-proton collisions detection algorithms in the LHCb detector
 - PV reconstruction algorithm optimization for 2023 conditions (different VELO position considered)
 - integrating InteractionRegion information about VELO position to PV reconstruction algorithms
 - VertexCompare comparison of primary vertex reconstruction between CPU and GPU algorithms, and real-data resolution monitoring

$B \rightarrow DX$ decays analysis:

- automation of data selection procedure and preparation of invariant mass fits
- preliminary 2022/2023/2024 dataset analysis, with a verification, including the use of pseudoexperiments

10/05/2024 32/33

Summary

- first half of my PhD
 physics analysis
- second part
 - technical development of the detector
- there is still need on checks, tuning, writing new algorithms and analysing new data!

Thank you!

xkcd

Backup slides

Maciej Giza

◆□▶ ◆□▶ ◆ => ◆ => ◆□ ≥ ● ○ ○ ○

What had to be done? (A lot!)

- Trigger strategy and Stripping selection
- Kinematic selection
- BDT & ProbNNp optimisation
- PID selection
- Charmless backgrounds consideration
- The fully reconstructed misidentified decays veto
- Efficiency calculations
- Misidentified backgrounds estimation
- Modelling of the signal and background shapes for the decays
- Invariant mass fits
- Systematic studies
- Validation

