Mildly relativistic shocks at high magnetisation

GABRIEL TORRALBA PAZ, MASAHIRO HOSHINO AND JACEK NIEMIEC

What are cosmic rays?

- Cosmic rays are high-energy particles that reach Earth from many different astrophysical sources.
- High-energy particles include protons, electrons and ions.
- One of the main sources of cosmic rays are plasma shocks.
- Particles can reach energies higher than 10²⁰ eV. That is SEVEN orders of magnitude more than LHC achieved.

Spectrum of Cosmic Rays (CERN)

Introduction to plasma shocks

- Plasma is the <u>most abundant</u> state of matter in the universe. Commonly, astrophysical plasmas are <u>collisionless</u>.
- A plasma shock represents a <u>transition layer</u> between two plasmas at different conditions.
- Plasma originated from astrophysical sources interact with an <u>external medium</u> and produce a shock
- Within a plasma shock, <u>plasma instabilities</u> arise due to complex wave-wave or particle-wave interactions that can cause <u>particle acceleration</u>.
- High-energy particles might leave the plasma and travel across the universe. Some of them will end up on Earth as <u>cosmic rays</u>.

Composite of shock structures (Hubble telescope)

Simulation of collisionless plasma shocks

- Although plasma shocks can be generated at the laboratory, the conditions and lifetime of such differ <u>significantly</u> from real astrophysical shocks.
- Computer simulations are required to study these shocks in-depth.
- Particle-In-Cell (PIC) simulations reproduce plasma shocks at kinetic scales:
 - Particles e.g. ions and electrons, are simulated in a <u>self-consistent</u> <u>electromagnetic field</u> + <u>background magnetic field</u>
- Many other kind of simulations exist to study different regimes of shocks.

Electron density of a plasma shock. Notice the difference between both sides

Plasma shock overview

4

The magnetic field and the density are compressed downstream

Shocks can be corrugated

Near upstream is usually filled with a reflected population

5

Disclaimer: PIC simulations are quite harder than this

Parameters of the simulations

- The parameters that are used in the code e.g. magnetic field, density, ..., are always given in <u>code units</u>.
- Derived physical parameters show accurately the properties of the shock:
 - ▶ $\gamma_{up} = 2.24 \rightarrow \gamma_{sh} \approx 3.3$ (upstream and shock Lorentz factor)
 - ▶ $m_i/m_e = 10$ (ion-to-electron mass ratio)
 - > $\lambda_{se} = 40$, $\lambda_{si} = 126.5$ (skin depth in units of cells)
 - $\beta_p = 0$ (plasma beta)
 - ▶ $\sigma = 0.1, 1.0$ (magnetic energy density over plasma bulk energy)
 - \blacktriangleright $\theta = 30^{\circ}, 40^{\circ}$ (angle between background **B** and the shock normal)
 - $\triangleright \varphi = 90^{\circ}$ (angle of background **B** with respect to the simulation plane)

• Lorentz factor (γ_{up}) :

- Relativistic shocks usually have <u>large obliquities</u> (relativistic contraction).
- Magnetised relativistic shocks emit precursor waves via SMI.
- Relativistic shocks appear in extragalactic sources or even around neutron stars or black holes.
- lon-electron mass ratio (m_i/m_e) :
 - The realistic mass ratio would be $m_i/m_e = 1836$.
 - In simulations, this corresponds to extremely short physical time, but requiring very long simulation times.
 - Usually, simulations use a <u>smaller mass ratio</u> while maintaining the physics of the shock.

• Electron skin depth ($\lambda_{se} = \frac{c}{\omega_{pe}}$):

- Determines the resolution of the simulation.
- Larger $\lambda_{se} \rightarrow$ Better resolution albeit larger simulation size.
- There is always a trade-off.
- ▶ Plasma beta (β_p) :
 - Plasmas have a certain temperature that can affect the results.
 - We quantify it by the plasma beta $\beta_p = \frac{nk_BT}{P_B}$, the ratio of thermal pressure to magnetic pressure $P_B = \frac{B^2}{2\mu_0}$.
 - ▶ Ultimately, the temperature is just the <u>random motion</u> of particles.

• Magnetisation ($\sigma = \frac{u_p}{P_B}$):

- To compare the magnetic field and the plasma velocity, we use both energy densities:
 - \blacktriangleright Magnetic energy density, which is also the magnetic pressure P_B
 - ► Plasma bulk energy: $u_p = n\gamma_0 mc^2$
- Large magnetisation will cause electrons to likely <u>follow magnetic lines</u>.
- Obliquity angle (θ) :
 - Direction of the magnetic field with respect to the shock normal.
 - The obliquity divides the shock in two different regimes: <u>sub</u> and <u>superluminal</u> shocks.
 - This angle is of great importance in terms of particle acceleration.

Simulation plane angle (φ) :

- Our simulations are performed in <u>2 spatial dimensions</u> due to computational constraints.
- The angle of the magnetic field with respect to the simulation plane can play an important role.
- Sometimes, the physics do not change whether the magnetic field is <u>inplane</u> or <u>out-of-plane</u>.
- A small change in the initial parameters can lead to great differences.
- Plasma evolution can be <u>highly non-linear</u>.

Results ($\sigma = 0.1$, $\theta = 30^{\circ}$)

Magnetic field

Electric field

11

Phase space

13

Protons and electrons get accelerated and reflected

They are reflected following magnetic lines

The mid-scale waves are seen here in phase space!

Spectra

Non-thermal

Upstream beam component 10^{-2} 10⁰ 10² 10^{-1} 10^{1} 10^{-1} 100 10^{1} Ω_i^{-1} 130 10⁵ 10⁵ 120 10³ 10³ 1) -110 10¹ $N(E)dE/(\gamma$ 10^{1} Maxwellian + $N(E)dE/(\gamma$ - 100 Accelerated component 10^{-1} 10^{-1} 90 $\Delta x = (105.0 + 135.0)\lambda_{si}$ $\Delta x = (105.0 - 135.0)\lambda_{si}$ - 80 10^{-3} 10^{-3} - 70 10⁻⁵-10⁻⁵ 10^{-2} 10² 10^{-1} 100 10¹ 10^{-1} 100 101 $\gamma - 1$ $\gamma - 1$

Results ($\sigma = 0.1, \Theta = 40^{\circ}$)

For a superluminal shock, the wave activity decreases

There are only precursor waves

Magnetic field

Electric field

15

Spectra

lons and electrons are barely accelerated

Results ($\sigma = 1.0, \Theta = 30^{\circ}$)

17

We cannot even call it shock as the transition to the downstream is not yet formed

Very planar shock. No corrugation as for $\sigma = 1.0$

Very strong Ex gradient

Magnetic field

Electric field

18

The "shock" is more of a series of strong soliton waves

The shock transition spans over a long range

Phase space

19

Massive acceleration in front and at the shock lons have two clearly separated populations

Results ($\sigma = 1.0, \Theta = 42^{\circ}$)

Similar structure to the case of 30°.

But contrary to 30°, there is no acceleration.

The shock is in the supercritical regime.

Large-scale simulations

- Previous results show mid-scale simulations.
- We are planning large-scale simulations on LUMI.
- ► We will search for a broader parameter range, extending simulations up to T = $250\Omega_{i}^{-1}$.
- What does large-scale mean?
 - ► The largest simulation will use up to 192 CPUs or 12,288 cores.
 - ► A total of storage used of ~360 TB, spanning 2 million files.
 - A total of 20 MCPUh!

LUMI supercomputer in Finland

22

Future prospects

As mentioned, large scale simulations are planned, totalling to 13 simulations.

Parameter range:

- ▶ σ = 0.1, 1
- \bullet Θ = 10°, 20°, 30°, 40°
- ▶ φ = 0°, 90°
- $hightarrow m_i/m_e = 100, 400$
- To understand how particles get accelerated, particle tracing is required.
- Dispersion relation ω(k) plots are important to understand the type of waves we observe.

Summary

- We study mildly relativistic shocks for mild and high magnetisations and oblique configurations.
- Strong waves are observed for both magnetisations, as well as a surprising acceleration of particles.
- Spectra show a non-thermal population which might help in understanding the origin of cosmic rays.
- Large-scale simulations are planned in LUMI.
- Research still goes on!