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What are cosmic rayse 1
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» Cosmic rays are high-energy particles | - Xo00s
that reach Earth from many different o i,
astrophysical sources. o
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» High-energy parficles include protons,
electrons and ions.

» One of the main sources of cosmic rays
are plasma shocks.
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» Parficles can reach energies higher than
102 eV. That is SEVEN orders of
magnitude more than LHC achieved.

Spectrum of Cosmic Rays
(CERN)



Infroduction to plasma shocks 2

>

Plasma is the most abundant state of matter in the
universe. Commonly, astrophysical plasmas are
collisionless.

A plasma shock represents a fransition layer
between two plasmas at different conditions.

Plasma originated from astrophysical sources
inferact with an external medium and produce a
shock

Within a plasma shock, plasma instabilities arise due
to complex wave-wave or parficle-wave
interactions that can cause particle acceleration.

High-energy particles might leave the plasma and
travel across the universe. Some of them will end up
on Earth as cosmic rays.
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Composite of shock structures
(Hubble telescope)




Simulation of collisionless plasmao 3
snoCks

» Although plasma shocks can be generated atf the laboratory, the conditions
and lifetime of such differ significantly from real astrophysical shocks.

» Computer simulations are required to study these shocks in-depth.

» Particle-In-Cell (PIC) simulations reproduce plasma shocks at kinetic scales:

» Particles e.g. ions and electrons, are simulated in a self-consistent
electromagnetic field + background magnetic field

» Many other kind of simulations exist to study different regimes of shocks.

Electron density of a
plasma shock. Nofice
the difference between
both sides




Plasma shock overview

The magnetic field
and the density
are compressed downstream

Shocks can be corrugated Near upstream is usually filled
with a reflected population
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The medium gets compressed
and produces a shock




Particle pushing

Field interpolation

S;: Shape factor
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Parameters of the simulations

» The parameters that are used in the code e.g. magnetic field,
density, ..., are always given in code units.

» Derived physical parameters show accurately the properties of the
shock:

> Yup = 2.24 - ys, = 3.3 (Upstream and shock Lorentz factor)
m;/m, = 10 (ion-to-electron mass ratio)

Ase = 40, Ag; = 126.5 (skin depth in units of cells)

By = 0 (plasma beta)

o = 0.1,1.0 (magnetic energy density over plasma bulk energy)

0 = 30°,40° (angle between background B and the shock normal)

vV v v v v Vv

@ = 90° (angle of background B with respect to the simulation plane)



The effect of parameters

» Lorentz factor (y,):

» Relativistic shocks usually have large obliquities (relativistic contraction).

» Magnetised relativistic shocks emit precursor waves via SMI.

» Relativistic shocks appear in extragalactic sources or even around
neutron stars or black holes.

» lon-electron mass ratio (m;/m,):
» The realistic mass ratio would be m;/m, = 1836.

» |In simulations, this corresponds to extremely short physical time, but
requiring very long simulation times.

» Usudally, simulations use a smaller mass rafio while maintaining the
physics of the shock.



The effect of parameters

» Electron skin depth (A, = —):

» Determines the resolution of the simulation.
» Larger A, — Better resolution albeit larger simulation size.
» There is always a trade-off.

» Plasma beta (B,):

» Plasmas have a certain temperature that can affect the results.
nkgT
Pp

» We quantfify it by the plasma beta g, = , the ratio of thermal

2

! B
pressure to magnetic pressure Pg = o
0

» Ultimately, the temperature is just the random motion of particles.




The effect of parameters

» Magnetisation (o = ;L—”):
B
» To compare the magnetic field and the plasma velocity, we use both
energy densities:

» Magnetic energy density, which is also the magnetic pressure Pg
» Plasma bulk energy: u, = nyomc?

» Large magnetisation will cause electrons to likely follow magnetic lines.

» Obliquity angle (9):
» Direction of the magnetic field with respect to the shock normal.

» The obliquity divides the shock in two different regimes: sub and
superluminal shocks.

» This angle is of great importance in terms of particle acceleration.




The effect of parameters

» Simulation plane angle (¢):

» Our simulations are performed in 2 spatial dimensions due to
computational constraints.

» The angle of the magnetic field with respect to the simulation plane can
play an important role.

» Sometimes, the physics do not change whether the magnetic field is in-
plane or out-of-plane.

» A small change in the initial parameters can lead to great
differences.

» Plasma evolution can be highly non-linear.
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Electric field
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Density 12

Shocks do not Small scale density Mid-scale waves
necessarily have to be waves in front of the associated with
felaallale s glelel accelerated electrons
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Phase space 13

Protons and electrons They are reflected The mid-scale waves are
get accelerated and reflected following magnetic lines seen here in phase space!
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Spectro

Non-thermal
Upstream beam component

Maxwellian +
Accelerated component

Ax =(105.0 — 135.0)Ag; Ax =(105.0 7 135.0)A;




Results (o = 0.1, 6=40° 15

For a superluminal shock, the

. There are only precursor waves
wave activity decreases
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Spectro

lons and electrons are barely
accelerated
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Results (o = 1.0, 6=30°) 17

We cannot even call it shock as
the transition to the
downstream is not yet formed
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The "“shock” is more of a series

Dens

The shock transition spans over
a long range

of strong soliton waves
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Phase space

Massive acceleration in front
and at the shock

t=414.724900y

lons have two clearly separated
populations
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B=42°)

Similar structure to the case of 30°.
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Phase space 2]

But contrary to 30°, there is no The shock is in the supercritical
acceleration. regime.
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Large-scale simulations 22

» Previous results show mid-scale
simulations.

» We are planning large-scale simulations
on LUMI.

» We will search for a broader parameter
range, extending simulationsup to T =
2500; 1.

» What does large-scale mean?

LUMI supercomputer
CPUs or 12,288 cores. in Finland

» The largest simulation will use up 1o 192

» A total of storage used of ~360 TB,
spanning 2 million files.

» A fotal of 20 MCPUN!



Future prospects

» As mentioned, large scale simulations are planned, totalling to 13
simulations.

» Parameterrange:

» 0c=0.1, 1
» O =10° 20° 30 4es
» ¢ =0° 90°

» m/m, = 100, 400

» To understand how particles get accelerated, particle tracing is
required.

» Dispersion relation w(k) plots are important to understand the type
of waves we observe.
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Summary

» We study mildly relativistic shocks for mild and high magnetisations

and oblique configurations.

» Strong waves are observed for both magnetisations, as well as @

surprising acceleration of particles.

» Spectra show a non-thermal population which might help in

understanding the origin of cosmic rays.
» Large-scale simulations are planned in LUMI.

» Research still goes onl
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