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The Cosmic Ray Puzzle

PDG 2024

Where and how are cosmic rays accelerated?
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The Cosmic Ray Connection

Accelerator (AGN, SNR, GRB, ..)
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Idealized scenarios
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Interaction of accelerated CR naturally leads to 
production of neutrinos and gamma rays

Pion Decays

𝜋+ → 𝜇+ + 𝜈𝜇 → 𝑒+ + 𝜈𝑒 + 𝜈𝜇 + ҧ𝜈𝜇

𝜋− → 𝜇− + ҧ𝜈𝜇 → 𝑒− + ҧ𝜈𝑒 + ҧ𝜈𝜇 + 𝜈𝜇 

𝜋0 → 𝛾𝛾 

DESY
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Neutrinos are Ideal Messengers

IceCube Collaboration/WIPAC, Juan Antonio Aguilar, and Jamie Yang
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Detection Method

Neutrinos

Secondaries

Transparent Natural Medium (Water / Ice)

Photons

(Cherenkov)

„Lines“ with 

Photosensors

DESY
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Accelerator (AGN, SNR, GRB, ..)



Neutrino Telescopes

Planned

Taking data since 10+ years
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Under Construction

+ Several proposed Chinese projects



The IceCube Neutrino Observatory

𝝂𝒆

𝝂𝝁

𝝁

𝝁

➢ 86 Strings with 60 Digital Optical 
Modules (DOMs)

➢ Full configuration running with > 99% 
uptime since 2011

➢ 3000 atmospheric 𝜇 per second
➢ 1 atmospheric 𝜈 per minute
➢ 1 astrophysical 𝜈 per day
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Event Channels

(EM / Hadronic) Cascades

Neutral Current (NC) & 𝜈𝑒 (𝜈𝜏) Charged Current (CC)

+ Energy resolution

+ High Purity

Time

Early                      Late

Throughgoing Tracks (muons)

𝜈𝜇 CC, atmospheric 𝜇

+ Angular resolution

+ Large effective area
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Event Selection Strategies

Fiducialization
Starting Tracks, Cascades
Morphology-based BG discrimination

Using Earth as shield
“Upgoing” tracks
Direction based BG discrimination
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❑ Combined fit of tracks / cascades with 
unified systematic uncertainty 
treatment

❑ Indications for structure in energy 
spectrum

Cosmic Neutrino Spectrum

PoS(ICRC2023)1064
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❑ Combined fit of tracks / cascades with 
unified systematic uncertainty 
treatment

❑ Indications for structure in energy 
spectrum

Cosmic Neutrino Spectrum

PoS(ICRC2023)1064
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The First Neutrino Source: TXS 056+056



Neutrinos from the Galactic Plane

DOI: 10.1126/science.adc9818

p

p

γ

γ
e+ν
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https://doi.org/10.1126/science.adc9818


Evidence for Galactic Neutrino Emission

DOI: 10.1126/science.adc9818

4.5𝜎 exclusion of pure isotropic hypothesis
6-13% of the total diffuse neutrino flux

Credit: Mirco Huennefeld

Cascade channel Deep Learning 
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https://doi.org/10.1126/science.adc9818


The Muon-Neutrino Sky

Science 378,538-543(2022)
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Searching for clustering and deviation from atmospheric 𝜈 spectrum at every point in the sky



The Muon-Neutrino Sky

Science 378,538-543(2022)
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Brightest spot overall and part of 
a-priory selected catalogue of 
110 astronomical objects.

Searching for clustering and deviation from atmospheric 𝜈 spectrum at every point in the sky



NGC1068
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❑ Type II Seyfert Galaxy

❑ d=14.4Mpc

❑ Compton-thick AGN

❑ Intrinsic X-ray photons in 
corona can provide target 
for 𝜈 production
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Neutrino Emission from NGC1068

Science 378,538-543(2022)

After correction for multiple testing: 4.2𝝈
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Neutrino Fluxes

DOI:10.1126/science.abg3395
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https://doi.org/10.1126/science.abg3395
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The Glashow Resonance

▪ Resonant 𝑊− -production in ҧ𝜈𝑒 − e−

interactions at 6.3 PeV neutrino energy 

(electron at rest)

ҧ𝜈𝑒 + 𝑒−  → 𝑊− →  ቊ
Hadrons (67%)
Leptons (33%)

▪ x200 increase over DIS in ҧ𝜈𝑒 cross section

▪ So far not observed experimentally, despite 

being fundamental Standard Model process

▪ Allows (statistical) measurement of 
ഥ𝜈𝑒

𝜈𝑒
ratio

(1:1 for pp, 4:14 for pγ)
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The Glashow Resonance

▪ Resonant 𝑊− -production in ҧ𝜈𝑒 − e−

interactions at 6.3 PeV neutrino energy 

(electron at rest)

ҧ𝜈𝑒 + 𝑒−  → 𝑊− →  ቊ
Hadrons (67%)
Leptons (23%)

▪ x200 increase over DIS in ҧ𝜈𝑒 cross section

▪ So far not observed experimentally, despite 

being fundamental Standard Model process

▪ Allows (statistical) measurement of 
ഥ𝜈𝑒

𝜈𝑒
ratio

-> Handle on astrophysical 𝜈 production 

mechanisms
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A Particle Cascade at 6PeV
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Nature 591, 220–224 (2021)
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Early Pulses

Nature 591, 220–224 (2021)
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Could it be prepulses? -> No!

Careful analysis rules out PMT prepulses (timing & charge doesn‘t match PMT prepulse characteristics)



Muon Production in Hadronic Cascades

𝑊−

𝜈𝑙 𝑙/𝜈𝑙

Mesons Muons

Hadronic Cascade (~15m length in ice)

ҧ𝜈𝑒 

𝑒
OR

Neutrino DIS

Glashow Resonance

N Muons can 

outrange the 

hadronic 

cascade
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Early Pulses from Muonic Component
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Independent Reconstruction of Muonic and Hadronic Component
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The Astrophysical Neutrino Spectrum

Nature 591, 220–224 (2021)
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▪ Are TXS056+056 and NGC1068 just the brightest sources of an 
entire population of similar sources? Or are they special in 
another way?

▪ Are there other source populations?

▪ How does CR acceleration work in these sources?

▪ Do we see diffuse emission from the Galactic plane or 
unresolves sources?

Open Questions

We need more telescopes!
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IceCube-Gen2 Neutrino Observatory

361 stations on a 550km² footprint Covering the footprint of the optical array

120 new strings with 80 sensors each
7.9km³ instrumented volume
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IceCube-Gen2

> 3 TeV> 30 PeV > 0.1 TeV >  GeV



Telescope Complementarity

Lisa Schumacher
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• 2600m deep plain
• Low currents (0.1m/s)
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The P-ONE Collaboration

P-ONE Collaboration Meeting, Krakow 2023



Precursor Experiment: STRAW
(STRings for Absorption length in Water)

Deployed 2018
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Optical Properties
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Kilian Holzapfel



Second Precursor: STRAW-B
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PMT Spectrometer

Camera



P-ONE Background
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The Vision Of P-ONE

Multi-km3 detector integrated into ONC infrastructure
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P-ONE: Aiming for Precision
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P-ONE 1

▪ 1km long mooring line with 20 modules

▪ 20 modules with 16 PMTs each.

▪ Onboard digitization & readout electronics

▪ Optical and calibration modules

▪ Connectorless cable design

▪ Sub-ns time synchronization
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Integrated Hemisphere
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❑ 16 Hamamatsu R14374-10 3” PMTs
❑ Modular, spring-loaded mounting structure
❑ Optical gel pads to increase light yield

❑ 16 channel ADC (full waveform digitization)
❑ 200 MHz sampling rate
❑ Local buffer (4GB)
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o IceCube has started the era of neutrino astronomy:

Two Neutrino Sources + Diffuse Emission from our Galaxy

o Lots of open questions to answer: More telescopes are needed

o Next Generation: KM3NeT + Baikal GVD under construction 

o P-ONE aims to instrument a multi-km^3 volume in the Pacific Ocean, 
integrated into the Ocean Networks Canada infrastructure

o More plans are on the table: Multiple Chinese proposals + IceCube-
Gen2

Summary / Outlook
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Backup



Detector Optimization

• Number of PMTs / placement per module

• Vertical spacing of modules on a line

• Horizontal spacing / layout of detector lines

• Placement / number of calibration instruments

• Trigger algorithm

The Road to P-ONE

Optimization target: Resolution + Acceptance, Analysis 
Sensitivities

Optimization constraints: Cost, geometric constraints 
(sea-bottom cabling), …
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Conventional Optimization

Simulate interaction (MC)

Calculate light yield

Propagate photons (MC)

Detector Response (MC)

Reconstruction

Resolution Functions

Repeat

▪ „Manual“ optimization. 

▪ Discrete exploration of design 

parameter space

▪ Expensive MC campaigns
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ML-Aided Optimization

Simulate interaction (MC)

Calculate light yield

Propagate photons (MC)

Detector Response (MC)

Reconstruction

Resolution Functions

Surrogate Model

Fisher Information

Resolution Functions

One (large) MC campaign to train model. 

Exploration of parameter space is cheap.

𝜕Analysis

𝜕Detector
Goal: 

No reconstruction algorithms needed
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Surrogate Model

Detector

Photons

𝜈

Arrival time distribution depends on: 

• relative position / direction of emitter and receiver

• energy

Our PMTs see this:

Relative photon arrival time
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Normalizing Flows

o Normalizing flows allow parametrization of PDFs.
Idea: Change of variables formula.
Start with samples 𝑥 of known distribution 𝜋(𝑥)(e.g. normal, gamma, …) and apply a 
function:

o 𝑦 = 𝑓(𝑥), 𝑥~𝜋(𝑥)

𝑝 𝑦 = 𝜋(𝑓−1 𝑦 ) det
𝜕𝑓−1

𝜕𝑦

o 𝑓 𝑢 can be arbitrary, as long as invertible and differentiable.
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Surrogate Model 

Histogram: MC Simulation
Lines: Surrogate Model(s)

Predicting the arrival time distribution for a neutrino interaction
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Fisher Information

[ℐ 𝜃 ]𝑖𝑗= 𝐸
𝜕

𝜕𝜃𝑖
log 𝑓(𝑋; 𝜃)

𝜕

𝜕𝜃𝑗
log 𝑓(𝑋; 𝜃)

Given a PDF 𝑓(𝑋; 𝜃) of an observable X conditioned on a parameter vector 𝜃, the Fisher Information Matrix is:

𝜃 = (Energy, Direction, Position, … ) 𝑓(𝑋; 𝜃): Surrogate Model

𝐸 𝑓 𝑥 ≈
1

𝑛
෍

𝑖=1

𝑛

𝑓 𝑥𝑖

Cramer Rao Bound: cov𝜃
መ𝜃 ≥ ℐ 𝜃 −1 

෠𝜃 = 𝐀𝐧𝐲 estimator of (Energy, Direction, Position, … )
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Predicting Bioluminescence

Kilian Holzapfel
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Proof of Concept

10-Line Detector, 20 modules per line, 50m vert. spacing

Horizontal spacing

For EM cascades, study resolution scaling as function of:

• Horizontal spacing

• Readout strategy (TOT vs. full waveform readout)

• Number of PMTs per module (photon collection 

efficiency /ignore pixelisation)
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Fisher Resolutions
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Fisher Resolutions

Clear benefit of full waveform readout
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Inputs:

• Resolutions

• Effective Volume („Acceptance“)

• Simple trigger (Multiplicity)

• Simple event selection (cut on 

positional resolution)

• Likelihood-based clustering analysis

Toy Neutrino Source Search

S
o
u
rc

e
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Lisa Schumacher, CH
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P-ONE Track Resolution
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Galactic Plane in Track Channel

Supporting result by 
independent analysis using 
track channel (2.7σ)

P. Fürst, PoS(ICRC2023)1046

Christian Haack | ECAP 60

Multiple diffuse emission models tested
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Gen2 Science Highlights

Precision measurement of the 
astrophysical neutrino spectrum

Resolving neutrino sources

And much, much more.

Check out the TDR

8.7σ for diffuse galactic emission
after 10years.

https://icecube-gen2.wisc.edu/wp-content/uploads/2023/07/IceCube_Gen2_TDR_0.05_July27.2023_Part_I_and_II.pdf
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Energy Density of Cosmic Messengers

https://arxiv.org/pdf/2008.04323.pdf



o For 1D PDFs, rational-quadratic (RQ) splines are useful normalizing flows:

• K RQ-splines between K+1 boundary points (knots)

• Invertible & differentiable

• Naturally supports multimodality

• 3𝐾 + 1 free parameters

In
p

u
t

NN Embedding

F
lo

w
 P

a
ra

m
e
te

rs

min
𝑤,𝑏

ℒ
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Classifying Bioluminescence

Kilian Holzapfel
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Species Identification

Kilian Holzapfel
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