

New Nanoparticles for Potential Theranostic Application

Kamil Stachurski kamil.stachurski@ifj.edu.pl PhD Seminar 26.04.2024 Department of Magnetic Resonance Imaging Institute of Nuclear Physics Polish Academy of Sciences

Content

- Magnetic Resonance Imaging
 - Contrast Agents
 - Theranostics
 - Materials and Methods
 - Results
 - Summary

THE HENRYK NIEWODNICZAŃSKI INSTITUTE OF NUCLEAR PHYSICS POLISH ACADEMY OF SCIENCES

• This work was partially supported by the National Centre of Science (NCN) of Poland, under grant nr: 2019/34/H/ST5/00578 (GRIEG-1, funded under the Norwegian Financial Mechanism) and grant nr. 2020/39/B/NZ7/01913 (OPUS 20).

Magnetic Resonance Imaging

• Nuclei which have a non-zero spin possess a magnetic moment, which is proportional to angular momentum:

$$\mu_z = \gamma \hbar m$$

• Equilibrium distribution is a descripted by the Boltzmann distribution:

$$\frac{N^{\uparrow}}{N^{\downarrow}} = \exp[-\frac{\Delta E}{k_B T}]$$

• The difference between energy levels can be described as:

$$\Delta E = \gamma \hbar B_0$$

• Larmor frequency:

$$\omega_0 = \gamma B_0$$

Figure 1. Allowed energy levels for atomic nuclei with different values of magnetic spin quantum number.

Natalia Łopuszyńska, 2021 Allen D. Elster, 2024

Magnetic Resonance Imaging

Figure 2. Distribution of spin orientation in absence and in presence B_1 magnetic field.

Figure 3. Evolution of magnetization vector in magnetic field.

Adel Razek et al., 2018

Figure 5. Principle of MRI.

Allen D. Elster, 2024

Magnetic Resonance Imaging

$$k_{x} = \frac{\gamma}{2\pi} \int_{0}^{t} G_{z}(t')dt'$$
$$k_{y} = \frac{\gamma}{2\pi} \int_{0}^{t} G_{y}(t')dt'$$

Figure 6. Representation of K-Space and Fourier transform.

Magnetic Resonance Imaging

Figure 7. MRI signal equation and their contrast function depends on TR and TE..

David C. Preston, 2006

Magnetic Resonance Imaging

Figure 8. T_{1} - and T_{2} weighted MR image of human brain.

Tissue	T1-Weighted	T2-Weighted
CSF	Dark	Bright
White Matter	Light	Dark Gray
Cortex	Gray	Light Gray
Fat (within bone marrow)	Bright	Light
Inflammation (infection, demyelination)	Dark	Bright

Figure 11. Infiltration of PFCs after myocardial infarction as detected by in vivo 19F MRI.

Theranostics

Materials and Methods

Polymeric NCs

- AOT/PLL with one Gd layer
- AOT/PLL with two Gd layers
- PCL with one Gd layer
- PCL with two Gd layers

HNS Nps

- HNS-Gd in PBS
- HNS-Gd in water
- Lactamide HNS-Gd
- 19F-HNS

CeO₂ NPs

- CeO₂-Gd
- CeO₂

Materials and Methods

Figure 12. Schematic representation of investigated HNS and CeO_2 NPs and AOT/PCL nanocapsules.

Kamil Stachurski

Materials and Methods

- MCAO Middle Cerebral Artery Occlusion
- Model of ischemic stroke in rats
- Insertion of a catheter into the brain
- Reduced blood flow to the brain leading to tissue damage and neurological deficits

Figure 13. Schematic representation of the major rat head and neck arteries (view from the top) and the appropriate filament position during MCAO. THE HENRYK NIEWODNICZAŃSKI INSTITUTE OF NUCLEAR PHYSICS POLISH ACADEMY OF SCIENCES

Materials and Methods

For RARE-VTR TR is varied to sample the T₁ relaxation curve

Figure 14. MSME sequence time diagram.

In Vitro Sequences Pipeline:

• $T_1 \max (\text{RARE VTR})$ • $T_2 \max (\text{MSME})$ $\frac{1}{T_i} = \frac{1}{T_{is}} + r_i \cdot C; \ i = (1, 2)$

 T_i – measured spin-latice or spin-spin relaxation time T_{iS} – relaxation time of the solvent nuclei without the contrast agent

C – concentration of Gd

Figure 15. T2-weighted (A), T2 map (B), T1 map (C) and diffusion map (D) on rat brain with ischemic stroke model.

In Vivo Sequences Pipeline:

- T₂-weighted images
 - T₂ map
 - T_1 map
 - Diffusion map
 - Perfusion map
- DCE (Dynamic Contrast Enhanced)

Peter Caravan et al. Chem. Rev. 1999, 99, 2293-2352 Bloembergen N. et al. J. Chem. Phys. 1961, 34, 842-850

Materials and Methods

- The relaxation of water molecules surrounding the paramagnetic complex is induced by a fluctuating magnetic field generated by the Brownian motion of this complex and is described by the Solomon–Bloembergen–Morgan (SBM) Theory
- The presence of a gadolinium(III) complex will increase the longitudinal and transverse relaxation rates, $1/T_1$ and $1/T_2$ of solvent nuclei
- Diamagnetic and paramagnetic relaxation rates are additive and described as

$$\left(\frac{1}{T_i}\right)_{obs} = \left(\frac{1}{T_i}\right)_d + \left(\frac{1}{T_i}\right)_p$$

- The paramagnetic contribution is dependent on the concentration of paramagnetic species
- Relaxivity is defined as the slope of the concentration dependence

$$\left(\frac{1}{T_i}\right)_{obs} = \left(\frac{1}{T_i}\right)_d + r_i * c_{Gd}$$

Results (in vitro)

C [mM]	r1 [mM ⁻¹ s ⁻¹]				
	One Gd layer	Two Gd layers			
AOT/PLL	3.711	2.55			
PCL	3.64	3.29			

PCL with lay	/ers:	PCL with layers:		
PLL/PGA/PLL-Gd/	PGA-g-PEG	PLL/PGA/PLL-Gd/PGA-g-PEG		
0.055 0.028	0.014	0.055	0.028 0.014	
H ₂ O NCs ref.	0.07	0.07	NCs ref. H ₂ O	
RARE VTR	SI: 2 mm	RARE VTR	SI: 2 mm	
TE: 7.0 ms	MTX: 128 x 128	TE: 7.0 ms	MTX: 128 x 128	
TR: 500 ms	FOV: 30 x 30 mm	TR: 500 ms	FOV: 30 x 30 mm	
		AOT with layers: G PLL/PGA/PLL-Gd/PGA/PLL-Gd/PGA-g-		
PCL with lay	/ers:	AOT w	vith layers:	
PLL/PGA/PLL-Gd/PGA/Pl	LL-Gd/PGA-g-PEG	PLL/PGA/PLL-Gd/F	PGA/PLL-Gd/PGA-g-PEG	
PCL with lay	vers:	AOT w	vith layers:	
PLL/PGA/PLL-Gd/PGA/PI	LL-Gd/PGA-g-PEG	PLL/PGA/PLL-Gd/F	VGA/PLL-Gd/PGA-g-PEG	
0.015 0.0075	H ₂ O	0.015	0.0075 H ₂ O	
PCL with lay	vers:	AOT w	vith layers:	
PLL/PGA/PLL-Gd/PGA/PL	LL-Gd/PGA-g-PEG	PLL/PGA/PLL-Gd/F	VGA/PLL-Gd/PGA-g-PEG	
0.015 0.0075	H ₂ O	0.015	0.0075 H ₂ O	
0.12 0.06	0.03	0.12	0.06 0.03	

Kamil Stachurski

Results (in vitro)

26.04.2024

Figure 21. Molar relaxivities of CeO2 nanoparticles.

Results (in vitro)

SI 20 00 mm FOV 4.00 mm MTX 32 Crossections) of the sample with 19F-POSS 4 JPLABH, 13-4 19F-HNS NPS

Kamil Stachurski

Results (in vivo)

Results (in vivo)

 $Magnevist^{\rm TM}$

THE HENRYK NIEWODNICZAŃSKI INSTITUTE OF NUCLEAR PHYSICS POLISH ACADEMY OF SCIENCES

Results (in vivo)

26.04.2024

Kamil Stachurski

23

Summary

- Analysis of PCL, AOT, HNS, CeO₂ contrast properties was performed, by calculating molar relaxivities
- All HNS-based nanoparticles exhibit reasonable positive contrasting properties, with r_1 values close to 2.0 mM⁻¹s⁻¹.
- HNS-Gd in PBS exhibits a relatively high r₂ value of 105.03 mM⁻¹s⁻¹, which can be attributed to binging to PBS particles and the creation of large molecules. Such a solution has also strong cytotoxic properties, while a similar effect was not observed for HNS-Gd in water.
- CeO₂-Gd nanoparticles have excellent positive contrasting properties, described by the very high r1 value of 32 mM⁻¹s⁻¹ which is also greatly visible in MR images above.
- 19F-HNS exhibits preferable characteristics for 19F MRI.
- There is a difference in the distribution of the hemispheres for stroke brains.
- PCL does not accumulate in the brain because the molecules do not cross the BBB.

NPs	AOT x1 Gd	PCL x1 Gd	AOT x2 Gd	PCL x2 Gd	HNS-Gd in water	HNS-Gd in PBS	Lact. HNS-Gd	CeO2	CeO2-Gd
$r_1 \; [mM^{-1}s^{-1}]$	3.71	3.64	2.53	3.29	1.88	2.12	2.49	0.75	32.26
$r_2 [mM^{-1}s^{-1}]$	11.9	22.8	15.49	16.82	6.76	105.1	8.42	1.11	74.82

What's next?

Kamil Stachurski

- Check relaxation properties of another nanoparticle or nanocapsules
- Conduct more in vivo experiments and precisely characterize the MCAO model
- Good BBB transport means good biodistribution
- Check neuroprotective effects
- ...

No.	Target Ligands	Targets	Properties Carriers		References
1	PHSRN peptides	Integrin α ₅ β ₁ enriched in the cerebral vasculature of ischemic tissue	Promoting angiogenesis and reducing BBB leakage	HES	[108]
2	Cyclo (Arg-Gly-Asp-D-Tyr-Lys) peptide	Integrin $\alpha_v \beta_3$ in damaged cerebral vascular endothelial cells	-	Mesenchymal stromal cell- derived exosomes	[87,88]
3	TfR targeted peptides	TfR in cerebral cortex microvessels	A good affinity with the target and smaller in size, without immunogenicity	PGA	[95]
4	PLT membrane and Arg-Gly-Asp peptides	Damaged and angiogenic blood vessels	-	PLGA	[60]
5	Neutrophil membranes	Damaged endothelial cells	Biocompatibility, long circulation times, and without immunogenicity	PLGA	[37,61]
6	Arg-Gly-Asp peptides	Integrin $\alpha_v \beta_3$ in damaged cerebral vascular endothelial cells	-	Neural progenitor cell-derived extracellular vesicles	[91,113]
7	Neutrophil membrane	Inflamed brain microvascular endothelial cells	Biocompatibility, long circulation times, and without immunogenicity	Nanozymes	[75]
8	PLT membrane	Injured vasculature endothelial cells	Biocompatibility, long circulation times, and without immunogenicity	Biomimetic nanobubble	[83]
9	Macrophage membrane	Injured vasculature endothelial cells	Long circulation times, without immunogenicity	MnO ₂ nanosphere	[32]
10	Monocyte membrane	Inflammatory endothelial cells	Inhibiting the recruitment of inflammatory cells to the brain	PLGA	[34]
11	Angiopep-2	Low density lipoprotein receptor-related protein 1 receptor on the BBB	-	Micelles	[40]
12	Mannose	Microglia and macrophages	-	Curdlan nanoparticles	[99,100]
13	2- MPPA	Microglia	-	Dendrimer	[69]
14	The tripeptide agonist N-acetyl Pro-Gly-Pro	CXCR2 receptor on the membrane of neutrophil	Low immunogenicity	DGL nanoparticles	[112]
15	CFLFLF	FPR located on the surfaces of neutrophils	-	PLGA and PEG nanoparticles	[79]
16	Glutathione	The ischemic brain area	-	Nanogel	[48]
17	RVG	Ischemic brain areas	-	EVs	[46]
18	Engineering CXCR4-enriched mesenchymal stem cell membrane vesicles	CXCL 12 in damaged brain	Cutting off the infiltration of neutrophils and macrophage cells in peripheral blood	Polydopamine nanospheres	[90]
19	Sodium cholate	The brain	Enhancing the water solubility of drugs	Liposomes	[51]

PHSRN, Pro-His-Ser-Arg-Asn; BBB, blood-brain barrier; HES, hydroxyethyl starch; Arg-Gly-Asp, arginine-glycine-aspartic; TfR, transferrin receptor; PGA, c-polyglutamic acid; PLT, platelet; PLGA, poly (lactic-co-glycolic acid); MnO₂, manganese dioxide; 2-MPPA, 2-(3-mercaptopropyl) pentanedioic acid; CXCR, C-X-C motif chemokine receptor; DGL, dendrigraft poly-L-lysine; FPR, formyl peptide receptor; CFLFLF, cinnam-yl-F-(D)L-F; PEG, polyethylene glycol; RVG, rabies virus glycoprotein; EVs, extracellular vehicles; CXCL12, chemokine (C-X-C motif) ligand 12.

The research presented in this lecture was performed after obtaining the consent of the bioethics committee.

Thank you for your attention!

CONTRIBUTORS

MRI INVESTIGATIONS

Natalia Łopuszyńska¹, Kamil Stachurski¹, Krzysztof Jasiński¹, Władysław P. Węglarz¹, Lili Zhang⁶, William Edward Louch⁶

MATERIALS SYNTHESIS: Krzysztof Szczepanowicz², Marta Szczęch², Piotr Warszyński², Terje Didriksen³, Juan Yang³, Anna Lind³, Sacha Muller³

BIOSAFETY ANALYSIS:

Danuta Jantas⁴, Agnieszka Basta - Kaim⁴, Magdalena Regulska⁴, Monika Leśkiewicz⁴, Magdalena Procner⁴, Władysław Lasoń⁴

ANIMAL PREPARATION: Bartosz Pomiarny⁵, Katarzyna Kalita¹

¹ Institute of Nuclear Physics Polish Academy of Sciences, Department of Magnetic Resonance Imaging, Cracow, Poland
² SINTEF Industry, Department of Process Technology, Oslo, Norway
³ Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Cracow, Poland
⁴ Maj Institute of Pharmacology Polish Academy of Sciences, Cracow, Poland
⁵ Jagiellonian University Medical College, Cracow, Poland

⁶ Oslo University Hospital, Oslo, Norway