Study of Semitauonic B-meson Decays at Belle/Belle II Experiments

Students' seminar | Krakow School of Interdisciplinary PhD Studies Mateusz Kaleta 19/04/2024 Introduction & Motivation
Belle (II) experiments
Methodology
Results
Summary

Introduction: Semitauonic B decays

- Sensitive to new physics amplitudes
- Large numer of observables
- Good theoretical tools, precise predictions
- Experimentally challenging

Combined R(D) and R(D*) measurements in tension ($\sim 3\sigma$) with the Standard Model prediction

Introduction: Semitauonic B decays

[M. Tanaka, R.Watanabe, New physics in the weak interaction of $B \rightarrow D^{(*)}\tau v$]

SM + Vector 2

SM + Tensor

Introduction: Semitauonic B decays

 $R(D^*) = 0.270 \pm 0.035 \text{ (stat)} \pm 0.030 \text{ (syst)}$ $P_{\tau} = -0.38 \pm 0.51 \text{ (stat)} \pm 0.20 \text{ (syst)}$

Combined R(D*) and P_τ result consistent with the SM prediction within 0.6σ

[PRL118, 211801 (2017) PRD97, 012004 (2018)]

II Belle (II) Experiment

The Belle II experiment:

- a particle physics experiment designed to study the properties of B mesons
- operates at the SuperKEKB accelerator complex at KEK in Tsukuba, Japan
- successor to the Belle Experiment, that operated in 1999-2010.

II Experimental facility / Belle II Detector

Belle II Detector

Multifunctional detection system composed of different types of sub-detectors:

- Particle identification
- Track reconstruction
- Vertexing

On-resonance B-meson pair production

 $e^+e^- \to \Upsilon(4S) \to B\overline{B}$

Beam energies precisely tunned to $\Upsilon(4S)$ mass:

 $\sqrt{s} = E_{e+} + E_{e-} = M_{\Upsilon(4S)}$

Kinematical constraints

Momentum conservation in two-body $\Upsilon(4S)$ decay:

$$\vec{p}_B(sig) = -\vec{p}_B(tag)$$

III Analysis strategy: kinematic variables

Kinematic variables available experimentally at B factories:

$q^2 = (p_B - p_{D^*})^2$	Four-momentum transfer squared
$\theta_{hel}(D^*)$	Angle between D-meson and B-meson in D* rest frame

We need signal B-meson momentum $\vec{p}_B(sig)$ to reconstruct these.

D* polarisation can be extracted from experimental data:

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta_{hel}(D^*)} = \frac{3}{4}\left(2F_L^{D^*}\cos^2\theta_{hel}(D^*) + \left(1 - F_L^{D^*}\right)\sin^2\theta_{hel}(D^*)\right]$$

III Analysis strategy: event reconstruction

Model-independent a	pproach		
Effective Lagrangian for $b \rightarrow c \tau \bar{\nu}$			
all possible 4-fermi operators with LH neutrinos			
$-\mathcal{L}_{\text{eff}} = 2\sqrt{2}G_F V_{cb} \sum_{l=e,\mu,\tau} \left[(\delta_{l\tau} + C_{V_1}^l) \mathcal{O}_{V_1}^l \right]$	$+ C_{V_2}^l \mathcal{O}_{V_2}^l +$	$C_{S_1}^l \mathcal{O}_{S_1}^l + C_{S_2}^l \mathcal{O}_{S_2}^l + C_T^l \mathcal{O}_T^l]$	
$\mathcal{O}_{V_1}^l = \bar{c}_L \gamma^\mu b_L \bar{\tau}_L \gamma_\mu \nu_{Ll} ,$	V-A	SM-like	
$\mathcal{O}_{V_2}^l = \bar{c}_R \gamma^\mu b_R \bar{\tau}_L \gamma_\mu \nu_{Ll} ,$	V+A	RH current	
$\mathcal{O}_{S_1}^l = \bar{c}_L b_R \bar{\tau}_R \nu_{Ll} ,$	S+P	charged Higgs (II)	
$\mathcal{O}_{S_2}^l = \bar{c}_R b_L \bar{\tau}_R \nu_{Ll} ,$	S-P	charged Higgs	
$\mathcal{O}_T^l = \bar{c}_R \sigma^{\mu\nu} b_L \bar{\tau}_R \sigma_{\mu\nu} \nu_{Ll}$	Tensor	GUT?	
Minoru TANAKA 6			

Generated samples:

- Standard Model: C_i = 0
- 2HDM: C_{s1}=-3.7

Calculations from: [M. Tanaka, R. Watanabe. Phys. Rev. D 87, 034028]

IV Results: Monte Carlo samples

 $\cos\theta_{hel}(D*)$ (SM)

cosθ_{hel}(D*) (2HDM)

Generated $\cos\theta_{hel}(D^*)$ distributions for two models: SM and 2HDM:

- $F_L(D^*)_{SM} = 0.45$
- F_L(D*)_{2HDM} = 0.53

IV Results: acceptance effects

Generated (solid line) vs. reconstructed (points) q2 and $\cos\theta_{hel}(D^*)$ distributions for Belle geometry, assuming Standard Model decay dynamics.

Decay channel: $B^{0} \rightarrow D^{*+} \tau^{-} v_{\tau}$ $D^{*+} \rightarrow D^{0} \pi^{+}$ $\tau^{-} \rightarrow \ell^{-} v_{\ell} v_{\tau}$

IV Results: efficiency map

Pick four variables that characterize the decay and can be reconstructed experimentally. Construct 4D histograms (generated and reconstructed) in these variables:

- $\cos\theta_{hel}(D^*)$ cosine helicity angle D*
- q² four-momentum transfer squared
- Ed normalized τ daughter energy
- $\cos\theta_d \tau$ daughter polar angle

Fig. 1D projections of 4D histograms: generated (black) and reconstructed (red)

III Results: efficiency map

Create a 4D efficiency map by dividing reconstructed histograms by generated ones:

$$w_{ijkl} = \frac{N_{ijkl}^{rec}}{N_{ijkl}^{gen}} \frac{N_{total}^{gen}}{N_{total}^{rec}}$$

- N_{ijkl} numer of events per bin
- N_{tot} total numer of events

Fig. 1D projections of 4D efficiency map

Fig. Generated (red) and reconstructed + reweghted distributions (blue). Plots made on independent sample generated with non-SM decay dynamics (2HDM)

Reweight reconstructed distributions using w_{ijkl} to recover generated observables

So far detector resolution not considered in the analysis (true Monte-Carlo kinematics used for reconstructed events)

Fig. Distributions (true - reconstructed) of q^2 and $cos\theta_{hel}(D^*)$. Plot generated for Belle geometry, with Standard Model decay dynamics. Mtag > 5.27GeV.

- Semitauonic B-meson decays are rich in observables experimentally accessible at B Factories
- Combined analysis of observables such as R(D*), F^{D*} can increase our understanding about the dynamics of the decay
- Using data from Belle and the ongoing Belle II experiment we can improve the sensitivity of previous measurements