XXII Cracow Epiphany Conference on the Physics in LHC Run2

7-9 January 2016, Cracow, Poland

Heavy Ion Results of the CMS Experiment

Bożena Boimska National Centre for Nuclear Research

on behalf of the CMS Collaboration

<u>Outline</u>

Introduction

Experimental results: PbPb vs. pPb

- Jet-quenching effect
- Quarkonia production
- Signals of (possible) collective behavior
- Results for pp collisions at 13 TeV

Timeline of HI publications

Introduction CMS detector

B. Boimska (NCBJ)

Introduction

Heavy-ion oriented data samples

Period	System	Energy (TeV)	Rec. Lumi.	
2010	p+p	7	6.2 nb ⁻¹	low pile-up
2010	Pb+Pb	2.76	7 μ b ⁻¹	
2011	Pb+Pb	2.76	150 μb ⁻¹	
2011	p+p	2.76	230 nb ⁻¹	
2013	p+Pb	5.02	35 nb ⁻¹	
2013	p+p	2.76	5.4 pb ⁻¹	
2015	p+p	13	270 nb ⁻¹	low pile-up

B. Boimska (NCBJ)

Experimental results <u>Nuclear modification factor</u>

Study of jet quenching by looking at magnitude of particle yield suppression.

Colorless probes (control probes) are not modified by the medium

Production scales with $N_{coll},\,R_{AA}\!\approx\!1$

- Colorless probes are unsuppressed
- Hadrons are modified (jet quenching)
- \Rightarrow Less b-hadron suppression at low p_T

B. Boimska (NCBJ)

Experimental results Nuclear modification factor

- Colorless probes are unsuppressed
- Hadrons and jets are modified (jet quenching)
- \clubsuit Less b-hadron suppression at low $p_T;$ b-jets are similar to q/g jets

B. Boimska (NCBJ)

Nuclear modification factor: PbPb vs. pPb

Charged particles

<u>At high p_T:</u>

Enhancement in pPb collisions, $R_{pA} > 1$

Suppression in PbPb collisions, $R_{AA} < 1$

Similar trend in R_{pA} and R_{AA} as a function of p_T

Need pp reference data at 5.02 TeV to reduce systematics

B. Boimska (NCBJ)

Nuclear modification factor: PbPb vs. pPb

Jet suppression observed in PbPb collisions is the final state effect

Nuclear modification factor: PbPb vs. pPb

Energy deposits in calorimeters:

Dijet p_T imbalance quantified by asymmetry A_J

B. Boimska (NCBJ)

Dijet events in PbPb collisions

Dijet p_T imbalance (A_J)
 increases with centrality
 → Direct observation of jet
 quenching in central PbPb
 collisions

⇒ Jets remain essentially back– to–back ($\Delta \phi \sim \pi$) for all centralities ⇒ Propagation of high p_T partons in dense nuclear medium does not lead to a strong angular decorrelation

B. Boimska (NCBJ)

Photon-jet events in PbPb collisions

Direct measure of the jet energy loss is the ratio of jet to photon p_T:

Photon-jet events in PbPb collisions

Direct measure of the jet energy loss is the ratio of jet to photon p_T:

14

B. Boimska (NCBJ)

Dijet events in pPb collisions

Dijet events in pPb collisions

B. Boimska (NCBJ)

Dijet events in PbPb collisions

Where does the lost energy go?

"missing" p_T||:

$$p_{\mathrm{T}}^{\parallel} = \sum_{\mathrm{Tracks}} - p_{\mathrm{T}}^{\mathrm{Track}} \cos{(\phi_{\mathrm{Track}} - \phi_{\mathrm{Leading Jet}})}$$

transverse plane

Sum the projections of p_T of all reconstructed charged tracks (in the event) onto leading jet axis

Study dependence of mean "missing" $< p_T^{||} >$ on dijet asymmetry A_J

$$A_J = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$$

B. Boimska (NCBJ)

Momentum balance restored when summing over all particles in the event, independently of ${\rm A}_{\rm J}$

In-cone excess of high p_T tracks is balanced by out-of-cone low p_T tracks.

Momentum difference in the dijet is balanced by low p_T particles at large angles relative to the jet axis.

B. Boimska (NCBJ)

<u>"Missing" p_T || vs. A_J</u>

arXiv:1509.09029

New analysis: projection of p_T for reconstructed charged tracks onto φ_{Dijet}

Missing p_T from high p_T particles increases as a function of A_J in the leading-jet direction

- pp: balanced by 2-8 GeV/c particles in the subleading-jet direction
- central PbPb: balanced by softer particles with $p_T < 2 \text{ GeV/c}$

B. Boimska (NCBJ)

B. Boimska (NCBJ)

B. Boimska (NCBJ)

Is jet fragmentation affected?

Measure Fragmentation Functions to check if energy loss mechanisms modify fragmentation of partons.

Is jet fragmentation affected?

pPb collisions

No modification of jet fragmentation function in pPb with respect to the interpolated pp reference

→ Without modification in jet R_{pPb} and FF_{pPb} , the observed PbPb modification can be attributed to the final-state hot nuclear matter effect

B. Boimska (NCBJ)

Sequential melting of quarkonia

• In QGP, color screening (Debye screening) leads to melting of quarkonia \rightarrow suppression of quarkonium yields.

• Quarkonium states have different binding energies (radii)

 \rightarrow they melt at different temperatures of the created medium.

Quarkonia: mass, binding energy and radius

state	J/ψ	χ _c	ψ(2S)
Mass(GeV)	3.10	3.53	3.69
∆E (GeV)	0.64	0.20	0.05
r _o (fm)	0.25	0.36	0.45

state	Y(1S)	Y(2S)	Y(3S)
Mass(GeV)	9.46	10.0	10.36
ΔE (GeV)	1.10	0.54	0.20
r _o (fm)	0.28	0.56	0.78

Centrality-integrated R_{AA} vs. binding energy

 $R_{AA} = \frac{\text{(Yield in AA)}}{N_{COLL}(AA) \times \text{(Yield in pp)}}$ Less bound states are

more suppressed than tighter bound ones → sequential suppression of quarkonia

B. Boimska (NCBJ)

Y production in pp and PbPb

Updated results: statistics for pp data x20; improved reconstruction for PbPb

Y suppression dependence on centrality observed and suppression is stronger for excited state
 Y suppression does not depend on kinematics (p_T and y)

B. Boimska (NCBJ)

production in pp, pPb and PbPb

JHEP 04 (2014) 103

$\Upsilon(nS)/\Upsilon(1S)$ ratio, centrality integrated

Relative production of excited state $(\Upsilon(2S) \text{ or } \Upsilon(3S))$ to ground state $\Upsilon(1S)$ more suppressed in **pPb** than in **pp**

In **PbPb** stronger suppression than in pPb collisions

PbPb < pPb < pp

$\Upsilon(2S)/\Upsilon(1S)$ ratio vs. multiplicity

 N_{tracks} - number of tracks with $p_T > 400 MeV/c$ and $|\eta| < 2.4$

$\Upsilon(2S)/\Upsilon(1S)$ decreases with event multiplicity for all systems

Same physical mechanisms present in pp, pPb and PbPb collisions ??

B. Boimska (NCBJ)

Two-particle correlations

$$\begin{array}{l} \Delta\eta = \eta^{\rm assoc} - \eta^{\rm trig} \\ \Delta\phi = \phi^{\rm assoc} - \phi^{\rm trig} \end{array}$$

B. Boimska (NCBJ)

Epiphany Conference, Cracow, 08.01.2016

Associated hadron yield per trigger:

 $\frac{1}{N_{trig}} \frac{d^2 N^{pair}}{d\Delta \eta d\Delta \phi} = B(0,0) \times \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)}$

<u>Two-particle correlations: Pb+Pb, p+Pb, p+p</u>

"Ridge" observed for all systems:

long-range ($\Delta\eta$), near-side ($\Delta\phi\approx 0$) correlations

Unexpected "ridge" in high-multiplicity pp collisions

<u>Two-particle correlations: Pb+Pb, p+Pb, p+p</u>

"Ridge" observed for all systems:

Explanation of the effect:

Fluctuations of the initial geometry and hydrodynamic evolution

Origin unknown for the small systems:

- hydrodynamic behavior ??
- initial-state gluon saturation (CGC) ??

Energy dependence study for pp collisions: 7 TeV (Run1) and 13 TeV (Run2)

B. Boimska (NCBJ)

Charged hadron multiplicity in pp@13TeV

First LHC Run2 publication

PLB 751 (2015) 143

 $\left[\frac{dN_{ch}}{d\eta}\right]_{|\eta|<0.5} = 5.49 \pm 0.01 (\text{stat}) + 0.17 (\text{syst}) \text{ for inelastic events}$

Energy dependence as expected

B. Boimska (NCBJ)

Two-particle correlations in pp at 13 TeV

p

D

13 TeV

"Ridge" in high-multiplicity pp collisions at 13 TeV

B. Boimska (NCBJ)

Comparison for pp collisions: 07 TeV and 013 TeV

CMS

B. Boimska (NCBJ)

Epiphany Conference, Cracow, 08.01.2016

Experimental results

Integrated associated yield

No collision energy dependence observed

• Effect is most evident in the intermediate transverse momentum region ($1 < p_T < 2 \text{ GeV}/c$)

➡ Approximately linear increase with multiplicity for N_{trk}^{offline}>40

arXiv:1510.03068

Integrated associated yield

Comparison **pp** vs. **pPb** vs. **PbPb**

Strong collision system size dependence of the associated yields

B. Boimska (NCBJ)

Elliptic (v₂) and triangular (v₃) flow harmonics

Azimuthal anisotropy harmonics determined from a Fourier decomposition of long-range two-particle $\Delta \phi$ correlation functions

Correlations of strange and charged hadrons

v_2 and v_2/n_q of strange hadrons

Same multiplicity bin for pPb and PbPb

PLB 742 (2015) 200

 v_2 shows mass ordering in pPb and PbPb: at low $p_{\rm T},$ smaller v_2 values for heavier particles

Mass ordering more clear in pPb than in PbPb \rightarrow stronger radial flow in pPb ??

 v_2 scaled by the number of constituent quarks: NCQ scaling observed \rightarrow indication of partonic degrees of freedom in the initial stage of the collision

Scaling better in pPb than in PbPb

B. Boimska (NCBJ)

v_3 and v_3/n_q of strange hadrons

Same multiplicity bin for pPb and PbPb

PLB 742 (2015) 200

Similar species dependence of v_3 to that of v_2 found

Mass ordering observed for v_2 and v_3 results supports presence of collective behavior in both systems (pPb and PbPb)

CMS

<u>Summary</u>

Results from Run1 presented for PbPb, pPb and pp collisions. First results from pp collisions at 13 TeV (Run2) also shown.

PbPb and pPb collisions:

Jet quenching

- Suppression observed for central PbPb is a final state effect
 - $\hfill\square$ No flavor dependence measured at high p_T
- High-p_T excess of jet tracks on leading jet side compensated by low-p_T excess of jet tracks on subleading jet side, which extends to large angles
- Jet fragmentation function modified in PbPb and not in pPb

Quarkonia production

- Sequential melting of quarkonium states observed in PbPb
- Y suppression depends on collision centrality and does not depend on kinematics
- Y(2S)/Y(1S) ratio decreases with event multiplicity

Collective behavior

 Results for "ridge" and elliptic (v₂) and triangular (v₃) flow similar in PbPb and high-multiplicity pPb collisions

pp collisions:

"Ridge" observed also in high-multiplicity pp collisions at 7 TeV and 13 TeV

B. Boimska (NCBJ)