Upgrade				

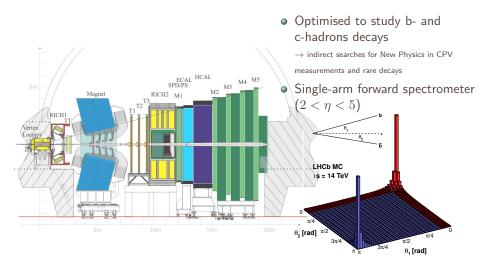
Past present and future of the LHCb detector

Violetta Cogoni - on behalf of the LHCb collaboration

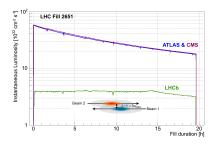
XXII Cracow EPIPHANY Conference

7–9 January, 2015

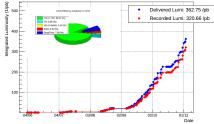
Outline				



- 2 The LHCb Upgrade
- 3 Trigger
- VErtex LOcator
- Tracking System
- 6 Ring Imaging CHerenkov detectors
 - Calorimeters



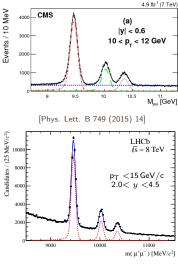
Introduction ●00					
I HCb des	sion				



Introduction 000					
LHCb des	sign				

• Operates at leveled luminosity

High peaks in luminosity lead to high pile-up which has a deleterious impact on data quality


LHCb Integrated Luminosity at p-p 6.5 TeV in 2015

Recorded integrated luminosity at LHCb:

- 2011: $\sim 1 \, \mathrm{fb}^{-1}$
- 2012: ~2 fb⁻¹
- 2015: ~320 pb⁻¹

I HCh rea	uirement	c			

LHCb requirements

[[]J. High Energy Phys. 06 (2013) 064]

Excellent resolution

- $ightarrow \,$ IP resolution 20 μm for high-pT tracks
- $ightarrow \ \Delta p/p = 0.5\% \ {
 m (low \ p)} 1\%$ (200 GeV/c)
- \rightarrow Decay time resolution 45 fs for $B_{\rm s} \rightarrow J/\psi \ \phi$ and $B_{\rm s} \rightarrow D_s \pi$
- $\begin{array}{l} \rightarrow & {\sf Mass\ resolution} \\ & \sim 8\,{\sf MeV}/c^2\ {\rm for\ B} \rightarrow {\sf J}/\psi\ {\sf X\ decays} \\ & \sim 22\,{\sf MeV}/c^2\ {\rm for\ two-body\ B\ decays} \\ & \sim 100\,{\sf MeV}/c^2\ {\rm for\ B}_{\sf S} \rightarrow \phi\gamma \end{array}$
- Excellent particle identification capabilities

$$\begin{array}{l} \rightarrow \ e: \ \varepsilon_e \ \sim 90\% \ \text{for} \ \sim 5\% \ \mathsf{P}(\mathsf{e}{\rightarrow}\mathsf{h}) \\ \rightarrow \ \mathsf{K}: \ \varepsilon_{\mathsf{K}} \ \sim 95\% \ \text{for} \ \sim 5\% \ \mathsf{P}(\pi \rightarrow \mathsf{K}) \\ \rightarrow \ \mu: \ \varepsilon_{\mu} \ \sim 97\% \ \text{for} \ \sim 1{-}3\% \ \mathsf{P}(\pi \rightarrow \mu) \end{array}$$

Upgrade ●○				

The LHCb Upgrade

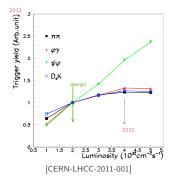
Aim

• Need to go to very high precision measurements: experimental sensitivity reaches theoretical uncertainty

Туре	Observable	Current precision	LHCb 2018	Upgrade (50 fb ⁻¹)	Theory uncertainty
B_s^0 mixing	$2\beta_s(B_s^0 \to J/\psi\phi)$	0.10 [139]	0.025	0.008	~0.003
	$2\beta_s(B_s^0 \rightarrow J/\psi f_0(980))$	0.17 [219]	0.045	0.014	~0.01
	$a_{\rm sl}^s$	$6.4 imes 10^{-3}$ [44]	$0.6 imes 10^{-3}$	0.2×10^{-3}	0.03×10^{-3}
Gluonic penguins	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	-	0.17	0.03	0.02
	$2\beta_{\tau}^{\text{eff}}(B_{\tau}^{0} \rightarrow K^{*0}\overline{K}^{*0})$	-	0.13	0.02	< 0.02
	$2\beta^{\rm eff}(B^0 \to \phi K^0_S)$	0.17 [44]	0.30	0.05	0.02
Right-handed currents	$2\beta_s^{\text{eff}}(B_s^0 \to \phi \gamma)$	-	0.09	0.02	< 0.01
	$\tau^{\rm eff}(B_s^0 \to \phi \gamma) / \tau_{B_s^0}$	-	5%	1%	0.2 %
Electroweak penguins	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{ GeV}^2/c^4)$	0.08 [68]	0.025	0.008	0.02
	$s_0 A_{FB}(B^0 \rightarrow K^{*0} \mu^+ \mu^-)$	25 % [68]	6%	2%	7%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV}^2/c^4)$	0.25 [77]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-)/\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25 % [86]	8%	2.5 %	$\sim 10 \%$
Higgs penguins	$\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$	1.5 × 10 ⁻⁹ [13]	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
	$\mathcal{B}(B^0\to\mu^+\mu^-)/\mathcal{B}(B^0_s\to\mu^+\mu^-)$	-	~100 %	~35 %	~5 %
Unitarity triangle angles	$\gamma(B \rightarrow D^{(*)}K^{(*)})$	~10–12° [252, 266]	4°	0.9°	negligible
	$\gamma(B_s^0 \rightarrow D_s K)$	-	11°	2.0°	negligible
	$\beta(B^0 \to J/\psi K_S^0)$	0.8° [44]	0.6°	0.2°	negligible
Charm CP violation	A_{Γ}	2.3×10^{-3} [44]	0.40×10^{-3}	0.07×10^{-3}	-
	ΔA_{CP}	2.1×10^{-3} [18]	0.65×10^{-3}	0.12×10^{-3}	_

Upgrade ○●				

The LHCb Upgrade


Problem

The available bandwidth and the limited discrimination power of hadronic L0 trigger implies saturation of the trigger for hadronic channels already at $4 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ \Rightarrow More severe cuts are needed

- \Rightarrow Efficiency loss

- Luminosity of $2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
- $1 \text{ MHz} \rightarrow 40 \text{ MHz}$ read-out
- Fully-software trigger
- Plan to collect $50 \, \text{fb}^{-1}$

- Detector front-end electronics needs to be rebuilt
- 7/22 Consolidate subdetectors

Introduction 000					
Trigger -	Run I				

40 MHz bunch crossing rate First level trigger implemented in hardware L0 Hardware Trigger : 1 MHz readout, high E_T/P_T signatures Input from ECAL, HCAL, Muon System 450 kHz 400 kHz 150 kHz Reduces rate to 1 MHz • Maximum latency $4 \mu s$ Defer 20% to disk Software High Level Trigger Software stage split into HLT1 and HLT2 29000 Logical CPU cores Offline reconstruction tuned to trigger time constraints • \sim 30 ms per event reconstruction Mixture of exclusive and inclusive selection algorithms Output rate 5 kHz 5 kHz (0.3 GB/s) to storage

LHCb 2012 Trigger Diagram

HLT

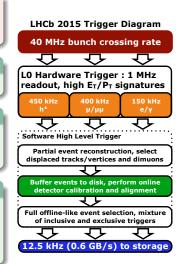
Trigger -	Run II				

$\sim 20\%$ increase in multiplicity

- \rightarrow more signal
- \rightarrow trigger has to be more selective

L0

Maximum readout rate still limited to 1 MHz


HLT

- Output rate 12.5 kHz
- Buffer 100% events to disk before running HLT2

Online alignment and calibration

Performing the alignment and calibration of the tracking subdetectors in real-time allows to store only candidates (for selected analyses) thus reducing the event size (90% size reduction) \Rightarrow **TURBO stream**

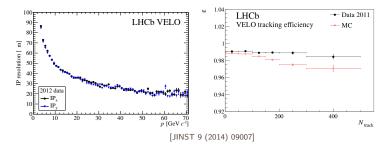
9/20 See Sevda Esen's talk for more details

					Conclusions 0000
Trigger -	Run III				

Main limitations

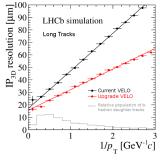
- Collision rate reduced to 1 MHz within fixed latency
- The largest inefficiencies in the trigger chain are introduced with the L0 decision

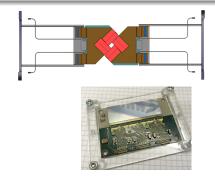
Strategy


- $\bullet~$ Remove bottleneck readout at 1 MHz $\rightarrow~$ 40 MHz
- L0 replaced by software based Low Level Trigger: trigger as similar as possible to offline selection
- Increased importance of the TURBO stream
- Increased output rate

LHCb Upgrade Trigger Diagram 30 MHz inelastic event rate (full rate event building) Software High Level Trigger Full event reconstruction, inclusive and exclusive kinematic/geometric selections Buffer events to disk, perform online detector calibration and alignment Add offline precision particle identification and track quality information to selections Output full event information for inclusive triggers, trigger candidates and related primary vertices for exclusive triggers 2-5 GB/s to storage

		VELO ●○			
VELO					

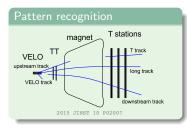

- Silicon microstrip vertex detector surrounding the collision region
- Two movable detector halves, each with R- and φ-segmented sensors
- $\sigma_{\rm IP} \sim 20 \,\mu{\rm m}$ for high-p_T tracks

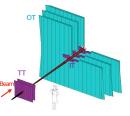


VELO - R	Run III				

Main changes

- Higher track multiplicity \rightarrow from strip to pixel detector
- Move closer to the beam: $8.2 \text{ mm} \rightarrow 5.1 \text{ mm}$
- New microchannel CO₂ cooling system, new air tight RF foil enclosure to separate VELO from primary vacuum
- Sensor thickness: $300 \,\mu\mathrm{m}{
 ightarrow} 200 \,\mu\mathrm{m}$

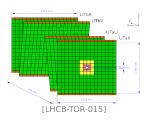



Introduction	Upgrade	Trigger	VELO	Tracking	RICH	Calorimeters	Muon System	Conclusions
000	00	000	oo	●00	00	00	00	0000
Tracking S	System -	Run I						

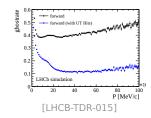
- **TT** large-area silicon-strip detector four layers: $0^{\circ}/+5^{\circ}/-5^{\circ}/0^{\circ}(\sigma_{hit} \approx 53 \,\mu m, \,\varepsilon_{hit} = 99.8\%$ (2012))
- T stations three stations of four layers each $0^{\circ}/+5^{\circ}/$ $-5^{\circ}/0^{\circ}$
 - Inner Tracker silicon-strip detectors

 $(\sigma_{\rm hit} = 54.9 \,\mu {\rm m} \ (2012), \, \varepsilon_{\rm hit} = 99.9\% \ (2012))$

• Outer Tracker drift tubes ($\sigma_{\text{hit}} \approx 200 \,\mu\text{m}$ for particles with p >10 GeV/c, $\varepsilon_{\text{hit}} = 99.2\%$)



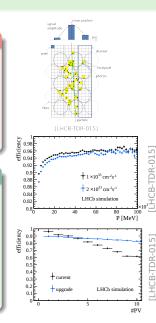
$TT \rightarrow U$	T - Run I				


Main limitations

- Insufficient radiation hardness
- Read-out strips of up to four consecutive sensors: unacceptably high occupancies expected at high luminosity
- Read-out Beetle front-end chip not compatible with 40 MHz read-out, cannot be simply replaced

Upstream Tracker

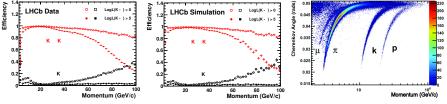
- Thinner sensors: 500 μ m \rightarrow 250 μ m
- Finer segmentation: from 183 μm(x)×10 cm(y) to 95 μm×4.9 cm
 95 μm×9.7 cm
 190 μm×9.7 cm
- Larger coverage: circular cut outs on the UT planes, thinner insulation layer sealed to the beam-pipe
- Lower electronic noise: signal processed at the sensors


				Tracking 00●		
T stations	$s \rightarrow SciF$	i Tracke	r - Run	111		

Main limitations

- 40 MHz read-out requires electronics replacement ⇒ detector replacement
- Designed for $\approx 10\%$ occupancy at $2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ \rightarrow currently $\approx 25\%$ occupancy at $5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ \Rightarrow at $2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ the occupancy would be too high

Scintillating Fibers


- Fibers allow optical signal transportation outside the acceptance volume
- 2.5 m long fibers with diameter 250 μ m read-out by Silicon Photomultipliers (SiPMs)
- Requirements: $\varepsilon_{\rm hit} \approx$ 99%, $\sigma_{\rm hit} \approx$ 100 $\mu{\rm m}$
- 3 stations of 4 layers each, $0^\circ/+5^\circ/$ -5 $^\circ/0^\circ,$ circular hole at the center

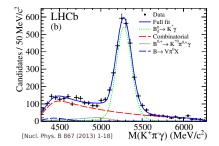
RICH				

- Two sub-detectors:
 - RICH 1 2 GeV/c 40 GeV/c over 25 mrad 300 mrad
 RICH 2 30 GeV/c 100 GeV/c over 15 mrad 120 mrad

 Particles traversing radiators produce Cherenkov rings on a plane of Hybrid Photon Detectors located outside acceptance

[Int.J.Mod.Phys. A 30 (2015) 1530022]

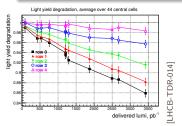
RICH - R	un III				


- RICH 1: increasing the focal lenght increasing the spherical-mirror radius of curvature to lower the occupancies
- RICH 2: occupancy <7% no modifications proposed for the optics
- Replace HPDs with 64 ch. multi anode PMTs with CLARO chip

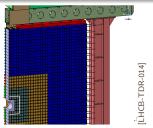
Introduction 000					
Calorime	tors				

Four systems

- SPD/PS two planes of scintillator tiles separated by a 12 mm lead layer
 - Scintillating Pad Detector (SPD) identifies charged particles for e/γ separation
 - PreShower (PS) identifies electromagnetic particles
- ECAL "shashlik" technology: 2 mm lead sheets and 4 mm scintillator plates Energy resolution $\sigma(E)/E = 10\%/\sqrt{E} + 1.5\%$ (E in GeV)
- HCAL iron (16 mm)/scintillating (4 mm) tiles parallel to the beam Energy resolution $\sigma(E)/E = 80\%/\sqrt{E} + 10\%$ (E in GeV)

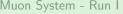

Here the mass resolution is dominated by ECAL high-energy photon reconstruction performances

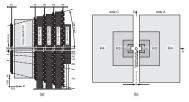
Calorimet	ers - Run				

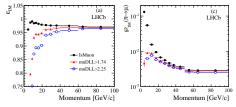

Expected radiation damage and high occupancies

- Remove PS and SPD
- HCAL modules ok up to \sim 50 fb⁻¹
- ECAL modules ok up to $\sim 20 \, {\rm fb}^{-1}$

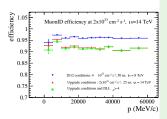
 \Rightarrow Replace of the most irradiated modules foreseen during LS3

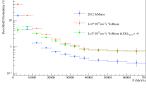



Evidence of radiation ageing in HCAL central module rows during the first three years of operations


The modules of the ECAL within the white line will need to be replaced

					Muon System ●0	
Muon Sve	stem - Ri	ın I				


Momentum range	Muon stations
$3 \text{ GeV}/c$	M2 and M3
$6 \text{ GeV}/c$	M2 and M3 and (M4 or M5)
p > 10 GeV/c	M2 and M3 and M4 and M5


- 5 rectangular stations (M1-M5) interspersed with iron filters
- 4 concentric regions (R1–R4) of decreasing granularity
- Multi-Wire Proportional Chambers (MWPC)
- Triple-GEM detectors (M1R1)
- Offline selection starts from the coincidence of the stations + discriminating variable
- muon ID efficiency \sim 97% for 1–3% $\pi \rightarrow \mu$ mis-ID probability

			Muon System ○●	

Muon System - Run III

Jpgrade program

- Removal of the first station (M1)
- New off-detector readout electronics compatible with 40 MHz (now limited to 1 MHz) ODE \rightarrow nODE based on SYNC \rightarrow nSYNC
- Installation of a new shielding in front of M2 around the beampipe
- News since LHCB-TDR-014: new algorithm has been developed which restores the pion rejection performance at high pileup!

Conclusio	ns				

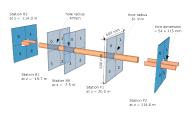
- LHCb has performed excellently in Run I
- Run II detector performances are similar to those in Run I
- Major changes in Run II trigger strategy with great advantages for an increasing number of analyses
- All TDR for the upgrade have been approved
- Projects for Run III are progressing well, with prototypes under test
- In Run III, broad use of TURBO stream thanks to the success of online alignment and calibration

Upgrade				

Backup Slides

 5				

Muon System - Run III


performances v	Archilli, de Simone Palutan, Vazquez Gomez			
measured at pile-up ~ 2.3	3< p< 6 GeV/c	6< p< 10 GeV/c	p> 10 GeV/c	Vazquez Gomez
IsMuon+muDLL	$.0799 \pm .0007$	$.0315 \pm .0002$	$.00666 \pm .00003$	1
isMuonTight+muDLL	$.0469 \pm .0005$	$.0222 \pm .0002$	$.00611 \pm .00003$	
isMuonTight+BDT	$.0348 \pm .0005$.0173 ± .0002	.00567 ± .00003	
	MisID increase with the			
extrapolated at pile-up \sim 7.4	3< p < 6 GeV/c	6 <p< 10="" c<="" gev="" td=""><td></td><td></td></p<>		
IsMuon+muDLL	.12 ± .01 (1.50)	.048± .003 (1.52)	.0091±.0005 (1.4)	
isMuonTight+muDLL	.088 ±.008 (1.10)	.043±.002 (1.37)	.0076±.0004(1.1)	
isMuonTight+BDT	.066 ±.008(0.83)	.031±.002(0.98)	.0068±.0004(1.0)	4

numbers btw parentheses are the ratios wrt is Muon+muDLL at pile-up \sim 2.3, which represent the benchmark values

Run II $ ightarrow$	HeRSCh	eL			

Motivation

- LHCb η coverage: some sensitivity in backward region $-1.5 < \eta < -3.5$
- Low pileup in Run II allows Central Exclusive Production (CEP) studies
- Currently: contamination of CEP signal by diffractive events due to high-rapidity particles escaping LHCb acceptance
- Idea: detect very forward activity from showers due to high-rapidity particles hitting the beampipe

- 4 Forward Shower Counters (FSCs) scintillator plates per station with fish tail light guides installed in the tunnel
- FSCs equipped with PMTs

Status

HeRSCheL fully installed - First look at data!