

ALICE: detector status and upgrade

XXII Cracow Epiphany Conference 7 – 9 Jan 2016

C. Mayer – Instytut Fizyki Jądrowej PAN, Krakow on behalf of the ALICE collaboration

Overview

- ALICE detector overview
- ALICE PID performance
- ALICE Upgrades
 - Inner Tracking system (ITS)
 - Fast Interaction Trigger (FIT)
 - Muon Forward Tracker (MFT)
 - Time Projection Chamber (TPC)
 - Online-offline computing (O²)
- Summary

The ALICE Detector

ALICE PID performance – Pb-Pb

1/7/16

Int. J. Mod. Phys. A 29 (2014) 1430044

ALICE PID performance – pp

1/7/16 Measurement of pion, kaon and proton production in proton-proton collisions at Vs=7 TeV, EPJC 75 (2015) 226

ALICE PID performance – Bayesian PID

Soft classification of tracks based on Bayesian statistics

All detectors with PID information can be used

Right: Combined pion identification with TOF and with dE/dx in the TPC

Performance of the ALICE Experiment at the CERN LHC Int. J. Mod. Phys. A 29 (2014) 1430044 1/7/16

LHC Schedule

https://lhc-commissioning.web.cern.ch/lhc-commissioning/schedule/LHC-long-term.htm

this presentation

Running conditions after LS2:

foreseen Pb-Pb L $\approx 6 \times 10^{27} \text{ cm}^{-2} \text{s}^{-1}$

(2011: 5×10²⁶ cm⁻²s⁻¹)

ALICE data to be collected in runs 3 and 4:

Pb-Pb: $L^{int} > 10 \text{ nb}^{-1}$

pp: $L^{int} > 6 pb^{-1}$

ALICE upgrade physics goals

- Heavy quarks as probes of the quark-medium interaction and of the QGP transport coefficients
- Heavy quark in-medium energy loss and its dependence on quark mass
 - Charm and beauty hadrons production and dynamics to lowest $\ensuremath{p_{T}}$
- Charmonium dissociation and possible regeneration as a tool to study de-confinement
 - J/ ψ and ψ (2S) ratio and prompt/non-prompt J/ ψ separation to lowest p_T and in the widest rapidity domain
- Target are probes with very small S/B -> minimum-bias trigger

ALICE upgrade physics goals

- Chiral symmetry restoration, space-time evolution and equation of state of the QGP
 - Vector mesons and virtual thermal photons in via low-mass di-electrons and di-muons
- Jet quenching and fragmentation
- PID of jet particle content
- Light nuclei production

• ...

ALICE upgrade strategy

Requirements

- Excellent tracking efficiency and resolution at low p_T down to < 100 MeV/c
 - Increase tracking detector granularity and reduce material thickness
- Impact parameter resolution
 - detectors as close as possible to the IP
- Large statistics in minimum-bias mode
 - Increase readout rate, reduce data size
- Preserve PID capabilities at high rate
 - Consolidate PID detectors and speed-up their read-out

11

ALICE upgrade strategy

New silicon pixel tracker at central and forward rapidities CMOS MAPS pixels ⇒ Improved tracking resolution, less material, faster read-out

12

ALICE upgrade strategy

Upgrade read-out for MUON, ZDC, TPC, TOF, TRD, EMCal, PHOS

CERN-LHCC-2012-012 & CERN-LHCC-2013-014

ALICE upgrade strategy

New Min. Bias trigger detector (Fast Interaction Trigger) Integrated Online-Offline system (O²)

Record min. bias Pb-Pb collisions at 50 kHz (×100 Run1 acquisition rate)

LS2 Upgrade Overview

Inner Silicon Trackers

- Rapidity coverage: $|\eta| < 1.5$ (ITS) and $-3.6 < \eta < -2.3$ (MFT)
- All-Pixel trackers
- Based on CMOS Monolithic Active Pixel Sensor technology
- Spatial hit resolution $\approx 5 \ \mu m$ (pixel size $\approx 28 \ x \ 28 \ \mu m^2$)
- Max. Pb-Pb read-out rate = 100 kHz, up to 400 kHz in pp

CERN-LHCC-2013-024

New ITS at mid-rapidity

New ITS at mid-rapidity

- Impact parameter resolution ×3 in transverse plane (×5 along beam)
- 90% track reconstruction efficiency down to $p_T \approx 0.1 0.2 \text{ GeV/c}$

CERN-LHCC-2015-001

Muon Forward Tracker

- Present MUON spectrometer blurred in muon track extrapolation
- No constraint in the primary vertex region (no charm/beauty separation)

CERN-LHCC-2015-001

Muon Forward Tracker

• -3.6 < η < -2.3

Muon Forward Tracker

Possibility to separate charm/beauty in single μ and J/ψ analysis

TPC Upgrade

Current Readout = MWPC

limits event readout rate to ≈3 kHz

New readout chambers based on GEM tech.

- Reduced ion back-flow
- Continuous readout up to 50 kHz Pb-Pb int. rate
- Momentum resolution preserved for ITS+TPC tracks
- PID efficiency via dE/dx measurement preserved

Readout and Trigger

- Goal: record each collision (@50 kHz)
- Minimum Bias trigger or self-triggered,
- Continuous readout GBT links between FEE and CRU
- Data throughput ≈1 TB/s in Pb-Pb (×100 compared to Runs 1-2)

CERN-LHCC-2013-019

Online and Offline (O²)

- O²: new facility at LHC Point 2
- ≈100k CPU cores
- 60 PB of storage

CERN-LHCC-2013-019

Online and Offline (O^2)

Number of reconstructed collisions and storage requirements for different systems and scenarios.

Example schedule (to be shifted by +1 year)	Year	System	Collisions	Storage CTF (PB)	Storage Calibration (TB)	Storage ESD/AOD (PB)	Required CPU seconds (single CPU core)
	2020	pp Pb–Pb	$\begin{array}{c} 2.7 \cdot 10^{10} \\ 2.3 \cdot 10^{10} \end{array}$	1.5 37	5 23	0.6 15	$\frac{1.7 \cdot 10^{10}}{2.8 \cdot 10^{11}}$
	2021	pp Pb–Pb	$\begin{array}{c} 2.7 \cdot 10^{10} \\ 2.3 \cdot 10^{10} \end{array}$	1.5 37	5 23	0.6 15	$\frac{1.7 \cdot 10^{10}}{2.8 \cdot 10^{11}}$
	2022	pp	$4.3 \cdot 10^{11}$	23	76	9.2	$2.7 \cdot 10^{11}$
	2025	pp Pb–Pb	$\begin{array}{c} 2.7 \cdot 10^{10} \\ 2.3 \cdot 10^{10} \end{array}$	1.5 37	5 23	0.6 15	$\frac{1.7 \cdot 10^{10}}{2.8 \cdot 10^{11}}$
	2026	pp Pb–Pb p–Pb	$\begin{array}{c} 2.7\cdot 10^{10} \\ 1.1\cdot 10^{10} \\ 1.0\cdot 10^{11} \end{array}$	1.5 18 10	5 11 20	0.6 7.2 4.0	$\begin{array}{c} 1.7 \cdot 10^{10} \\ 1.3 \cdot 10^{11} \\ 7.2 \cdot 10^{10} \end{array}$
	2027	pp Pb–Pb	$\begin{array}{c} 2.7 \cdot 10^{10} \\ 2.3 \cdot 10^{10} \end{array}$	1.5 37	5 23	0.6 15	$\frac{1.7 \cdot 10^{10}}{2.8 \cdot 10^{11}}$

Summary

- Major ALICE detector/readout/computing upgrades
 - Improved tracking performance
 - Enable Pb-Pb collisions readout rate at 50 kHz
- Unique Physics program with × 100 larger statistics
- Focused on

Heavy-Flavour and Charmonium

+ much more:

- low-mass di-leptons
- light-nuclei,
- jets
- ...

ALICE UPGRADE

	ALICE Conservation Comparison		
Upgrade of the ALICE Experiment Letter of Intent	Upgrade of the Inner Tracking System Conceptual Design Report	Upgrade of the ALICE Experiment Addendum to the Letter of Intent The Muon Forward Tracker	Upgrade of the Inner Tracking System Beneal Design Report
ALICE	ALICE CRUT CALL CONTROL		
Upgrade of the Readout & Trigger System Retrical Design Report	Upgrade of the Time Projection Chamber Reducal Design Report	Muon Forward Tracker Retrical Design Report	Upgrade of the Online - Offline computing system Rechard Design Report