

CMS Detector Status and Upgrade

Norraphat SRIMANOBHAS (Chulalongkorn U., Thailand) on behalf of the CMS Collaboration

XXII Cracow EPIPHANY 2016 7-9 January 2016 Kraków, POLAND

CMS Status and Upgrade

CMS Current Status

• See F. de Guio talk (Run2 performance of the CMS detector)

CMS Upgrade Plan

CMS Phase I Upgrade

- Summary for CMS Phase I Upgrades
 - Phase I Pixel Upgrade
 - Phase I Hadron Calorimeter Upgrade
 - Phase I Level-1 Upgrade

CMS Phase II Upgrade

- HL-LHC Physics Challenges
- Physics Opportunities at 3000 fb⁻¹
- HL-LHC Detector Challenges
- Summary for CMS Phase II Upgrades
 - Phase II Tracker and Tracking
 - Phase II Calorimeters
 - Phase II Muon Systems
 - Phase II Level-1 / HLT / DAQ

CMS Computing

Summary

CMS Current Status

For 2015:

4105 pb⁻¹ / 3675 pb⁻¹ (delivered/recorded) B = 3.8T: 3085 pb⁻¹ / 2860 pb⁻¹ (92.7%) B \neq 3.8T: 1020 pb⁻¹ / 815 pb⁻¹ (80%)

33 public results for 13 TeV 2015:

http://cms-results.web.cern.ch/cmsresults/public-results/preliminary-results/ LHC-Jamboree-2015.html

Dimuon mass spectrum:

CMS Integrated Luminosity, pp, 2015, $\sqrt{s} =$ 13 TeV

CMS Upgrade Plan

http://hilumilhc.web.cern.ch/about/hl-lhc-project

CMS Phase I Upgrades

Pixel tracker

4-layer barrel and 3 forward-disk pixel tracker with new readout chip capable of higher hit rate (installation during end of 2016 extended technical stop).

Hadron calorimeter

Installation of SiPM devices into barrel/endcap calorimeters and new electronics in the forward calorimeter (installation during EYETS 2016/2017) allowing timing-based background rejection.

Trigger

Upgrade the muon and calorimeter Level-1 trigger systems and global trigger processor to handle higher luminosities without loss of efficiency for key physics channels (installation and commissioning during 2015-2016).

Phase | Pixel Upgrade

- One additional layer will be added in the barrel and endcap regions (most inner barrel layer with a radius of 3 cm): will reduce fake rate and improve track resolution and efficiency.
- New readout chip to operate without data loss up to 2x10³⁴ cm⁻²s⁻¹ at 100kHz trigger rate.
- 8 pilot modules are installed on forward blades for Run-2.

Phase | Hadron Calorimeter Upgrade

- New photodetectors to deal with radiation and anomalous signals:
 - HF: Photomultipliers (PMT) to multi-anode PMTs.
 - HB/HE: Hybrid photo diodes (HPD) to Silicon Photomultipliers (SiPM).
- New Front-End and Back-End electronics.

Phase I LIT upgrade

- Need to maintain the trigger performance of Run-1 towards Run-2&3.
- Move to high-performance
 FPGA's and common use of the μTCA architecture.
- Deployed from "legacy" to "upgrade" trigger system in two stages.

CMS Phase II Upgrade

The Compact Muon Solenoid Phase II Upgrade Technical proposal

- Physics motivations
- Detector upgrades
- Software and computing
- Detector performance
- Project planning
- Estimated cost

http://cds.cern.ch/record/2020886

Physics Opportunities at 3000 fb⁻¹

- 2-10% precision on Higgs couplings.
- Coupling to the 2nd generation fermions will be probed for the first time by measuring the Higgs boson decays to two muons.
- Evidence of di-Higgs production (allow to study Higgs boson self coupling).

Physics Opportunities at 3000 fb⁻¹

FΧ

- HH \rightarrow bbyy with background from ZH, ttH, bbH
- VBF H $\rightarrow \tau\tau$: enabled by VBF jet tagging, τ -ID, MET resolution
 - Mono-channel to search for the Dark Matter, including MonoHiggs.

Physics Opportunities at 3000 fb⁻¹

HL-LHC Detector Challenges

High Pile-Up

- To maintain detector performance in the presence of higher pileup:
- Upgrade several detector components.
- Redesign some electronics, trigger and DAQ.

Summary for CMS Phase II Upgrades

Muon system

- Replace DT & CSC FE/BE electronics
- Complete RPC coverage in region
 1.5 < η < 2.4 (new GEM/RPC technology)
- Muon-tagging $2.4 < \eta < 3$

L1/HLT/DAQ

- Track information at L1
- L1-Trigger ~ 750 kHz
- HLT output ~7.5 kHz

Replace Tracker

- Radiation tolerant higher granularity - less material better p_T resolution
- Extended η region up to η
 ~ 3.8
- Tracks trigger at L1

Calorimeter

- Barrel EM calorimeter
 - Replace FE/BE electronics
 - Lower operating temperature

Replace endcap calorimeter

- Radiation tolerant high granularity
- 3D capability and precise timing

Phase II Outer Tracker Configuration

Several configurations investigated with simplified simulation to define baseline:

- 6/5 barrel/endcap layers/disks instead of 10/11 in current outer tracker.
- Increased granularity through short strips \approx x4 current outer tracker.
- 2 sensors modules in all layers for Trigger purpose.
- Long Pixel in 3 inner layer modules (PS) for z-coordinate measurement.
- Light module design & mechanics CO2 cooling (-30°) DC/DC powering.

Phase II Pixel Detector Configuration

Current configuration based on Phase-I design - ongoing studies to reduce material and to improve/adapt resolution through reduced pixel size

- Barrel pixel with 4 layers at 3, 7, 11 and 16 cm.
- Forward pixel with 10 disks extending coverage to η =3.8.
- Data readout at 750 kHz.
- Maintainable during winter shutdown.

Phase II Tracker and Tracking

- Track efficiency and fake rates for Phase-II 200 PU similar to Phase-I 50.
 - Tolerable fake increase at 200 PU.

- Momentum resolution substantially improved (lower pitch and less material).
- Signal Primary Vertex efficiency \geq 95% with 20 μ m resolution at 200 PU.

Phase II Tracker and Tracking

 b-tagging Phase-II recovers Phase-I performance - expected to improve with new pixel design (smaller pitch & less material).

Performance is expressed as misidentification probability for udsg-jets and c-jets as a function of b-jet tagging efficiency.

Phase II Tracker and Tracking

• τ-ID - based on track isolation (robust to PU) same efficiency working point below

Phase II Calorimeters

- Challenges from high radiation dose in $|\eta| \sim 3$, neutron flux and PU, CMS proposes to replace endcap calorimeters with new high-granularity sampling calorimeter (HGC):
 - Electromagnetic EE (Σdepth~26 X0, 1.5λ): 28 layers of Silicon-W absorber.
 - Front Hadronic FH (Σ depth~3.5 λ): 12 layers of Silicon/Brass.
- Back Hadronic Calorimeter (BH) (Σdepth~5 λ): 12 layers of Scintillator/Brass (2 depths readout).

Total Depth ~10λ

Phase II Calorimeters, Electron Eff.

• Electron reconstruction efficiency in the ECAL barrel and in the HGCAL endcaps as a function of the number of pileup interactions per crossing.

Phase II Calorimeters, Photon Eff.

• Photon selection efficiency and fake rate in the endcaps in bins of p_T and $|\eta|$.

Phase II Calorimeters, Jet

 Combined effect of new EC and Tracker extension allows Phase-II to mostly recover energy resolution and fake rate of Phase-I detector at 50 PU.

Phase II Calorimeters, MET

- Phase-II detector recovers MET resolution partially.
- MET tails significantly reduced by tracking extension.

Phase II Muon Systems

Existing muon system

- Rates scale linearly with luminosity and, with integrated charge, are consistent with expectations.
- Muon detectors are expected to survive 3000 fb⁻¹.

New muon detector in forward regions

Complete RPC coverage in 1.5 < η < 2.4 (foreseen in CMS initial design)

- Pairs of triple GEM chambers in 2 first stations high rate and high resolution capability - improve trigger.
- iRPC in stations 3 and 4 higher rate capability consolidate reconstruction & reject background.

Extend coverage up to $\eta = 3$

 6 triple GEM (ME0) in space freed behind more compact EC, ring i for muon-tagging with matching in Tracker extension.

10° GE1/1 chambers

First CMS muon endcap station where the inner ring is equipped with 18 long and 18 short triple GEM SCs.

Phase II Muon Systems

MEO (Muon tagger)

- 2.4<|**η**|<3.0
- 6 layers of Triple-GEM
- each chamber spans 20°
- Installation: LS3

GE1/1 (Trigger and reconstruction)

- 1.55 < |ŋ| < 2.18
- baseline detector for GEM project
- 36 staggered super-chambers (SC) per endcap, each super-chamber spans 10°
- One super-chamber is made of 2 backto-back triple-GEM detectors
- Installation: LS2

RE3/1 - RE4/1 (Trigger and reconstruction)

- 1.8<|ŋ|<2.4
 - Improved RPC (iRPC), finer pitch
 - 18 chambers per endcap, each chamber spans 20°
- Installation: LS3

GE2/1 (Trigger and reconstruction)

- 1.55 < |η| < 2.45
- 18 staggered SC per endcap,
- each chamber covers 20°, 3.5 x GE1/1

area

• Installation: LS3

CMS TECHNICAL DESIGN REPORT FOR THE MUON ENDCAP GEM UPGRAD

CERN-LHCC-2015-012

Phase II Muon Systems

Norraphat SRIMANOBHAS | EPIPHANY 2016

with reasonable background rates.

Phase II Level-I / HLT / DAQ

L1-Trigger

- High bandwidth and processing power boards.
- First layer to match detector information.
- Second layer to produce Trigger objects.

Trigger timing, throttling and control

 High Bandwidth bi-directional link allowing trigger information to steer readout.

DAQ

- Similar evt builder, HLT and storage as present.
- Increase Band Width 800 links x 100 Gbps with 30% occ. will provide 30 Tbps evt building throughput.

HLT

 Processing power scales as PU x L1 rate - need increase by a factor ~ 52 wrt Run 2 at 200 PU.

Phase II Planning

	2015	2016	201	7 ¦	2018	2019		2020	2021	2022	2023	2024	202	25 ¦	2026
	 	1				L	.S2			 		L	S3		
Outer Tracker	Desi P	gn and rototyping	Engin	eering/ pre-p	roduction EDR			Prod	uction/Asser	nbly					
Inner Pixel	Desi Pr	gn and ototyping	Proto	otyping	Enginee pre–	ering/ -production	EDR		Production	Assembly			Pr		
ECAL Barrel	Desig	gn and Protot	yping	TDR	Enginee	ering/ pre-pr	oductio	on	ESR	Production	n	Prepai	e–inst	In	Com
Endcap Calorimeter	Desig	n and Protot	yping	TDR	Engineering/ pre-	production	EDR		Production	n/Assembly	,	ation i	allatior	stallati	missio
Muon		and Protot	yping	TDR	Engineerin	ng/ pre-produ	uction	EDR ESR	Produ	action/Asse	mbly	n UXC	ı Testii	on	ning
BRIL			Desi	ign and	l Prototypir	ng	IDK	Eng pre-	ineering/ production	EDR	Production		Bu		
Trigger		Design a	nd R&I)	Protot	typing	TDR	Pre-produ	ection ESR	Produc	tion				
DAQ		Desi	gn and	R&D		Prototy	ping	TDR	Demonstrator	ESR	Production			HL Procure	Tement
	Concept	tual Schedu	le (v2)			1 	 		 	1 					

• R&D Program: Well established for all upgrades with set of major milestones.

• TDRs foreseen in 2017: Including design optimisation, main technical choices, improved cost estimates, and construction funding and sharing model.

CMS Computing

 Reconstruction and AOD resource requirements per event relative to those in Run-II

	Pile-up	Reconstruction time	AOD size
Detector	(Ave./crossing)	(Ratio to Run-II)	(Ratio to Run-II)
Phase-I	50	4	1.4
Phase-II	140	20	3.7
Phase-II	200	45	5.4

 detector simulation and digitization resource requirements per event relative to those of Run-II

	Pileup	Detector simulation	Digitization			
Detector	(Ave./crossing)	(Ratio to Run-II)	(Ratio to Run-II)			
Phase-I	50	1	4			
Phase-II	140	1	9			
Phase-II	200	1	13			

 Work on rewriting algorithms specifically to improve technical performance characteristics and the use of new C++ compilers, including both integration of C++11 standards and advanced compilation options, continues to yield considerable improvements in performance.

Conclusions CMS Status and Upgrade

• Current status:

- LS1 work successfully completed
- Recorded 90% of collisions delivered by LHC, 75% @ 3.8 T
- First 13 TeV results appear
- Long list of new physics insights
- We are in the Phase I Upgrade.
- Preparing for our future research at the HL-LHC:
 - CMS has developed strong conceptual designs for all detector upgrades to solve aging issues and high luminosity and PU challenges, covering the entire physics reach at the HL-LHC.
 - Design and technical optimizations for performance/cost-effective upgrades will continue during the preparation of individual project TDRs.
 - TDRs are foreseen in 2017.