Standard Model Higgs results from ATLAS and CMS experiments

Jana Faltova on behalf of ATLAS and CMS Collaborations

Epiphany 2016 7 – 9 January 2016, Krakow

Outline

- LHC collider
- ATLAS, CMS detectors
- Run1 and Run2 conditions
- Higgs boson
- Run1 results
- First Run2 measurements
- Conclusions

Large Hadron Collider (LHC)

LHC at CERN

- 27 km long ring
- proton-proton and heavy ion collisions

Running conditions

- Run1 (2010 2012)
 - √s = 7, 8 TeV
 - 50 ns bunch spacing
- Run2 (since 2015)
 - √s = 13 TeV
 - 50 and 25 ns bunch spacing

ATLAS and CMS detectors

CMS in Run2

- Cold operation of Tracker
- Luminosity detectors
- 4th muon station
- New beam pipe

ATLAS in Run2

- 4th inner most layer of pixels (3.3 cm)
- Complete muon coverage
- Luminosity detectors
- Trigger

7-9th January

Epiphany 2016

Luminosity in Run1 and Run2

CMS Integrated Luminosity, pp, 2012, $\sqrt{s} = 8$ TeV

CMS Integrated Luminosity, pp, 2015, $\sqrt{s} = 13 \text{ TeV}$

Epiphany 2016

Luminosity in Run1 and Run2

CMS Prelimina

CMS Integrated Luminosity, pp, 2015, $\sqrt{s} = 13 \text{ TeV}$

Total Integrated Luminosity (fb^{-1}) ⁵ 0 ⁵ ⁵ 10 n 1 May 1 0ct 2 Jun 1 AU9 1 Sep 2 141 1 NON 1 Dec Date (UTC)

CMS Integrated Luminosity, pp, 2012, $\sqrt{s} = 8$ TeV

LHC Delivered: 23.30

CMS Recorded: 21.79

CMS Validated: 19.79

Data included from 2014-04-04 22:38 to 2012-12-16 20:50 UTC

Good for physics analysis in Run1

25

20

15

- ATLAS: 4.6 fb⁻¹ + 20.3 fb⁻¹
- CMS: 5.1 fb⁻¹ + 19.8 fb⁻¹ •

Luminosity in Run1 and Run2

Date (UTC)

Good for physics analysis in Run1

- ATLAS: 4.6 fb⁻¹ + 20.3 fb⁻¹
- CMS: 5.1 fb⁻¹ + 19.8 fb⁻¹

Good for physics analysis in Run2

- ATLAS: 3.2 fb⁻¹
- CMS: 2.6 fb⁻¹ (magnet cryogenic supply issues)

Epiphany 2016

Pileup in Run1 and Run2

Pileup in Run1 and Run2

Epiphany 2016

Pileup in Run1 and Run2

Epiphany 2016

Standard Model (SM) and Higgs boson

Brout-Englert-Higgs mechanism

- Masses of particles via spontaneous symmetry breaking
- Cancellation of tree level divergences
- Higgs boson particle

Higgs production at LHC

Production modes

- gg fusion
- vector boson fusion
- associated production with W/Z boson, bb, tt

Production	Cross section [pb]		Order of
process	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	calculation
ggF	15.0 ± 1.6	19.2 ± 2.0	NNLO(QCD)+NLO(EW)
VBF	1.22 ± 0.03	1.58 ± 0.04	$NLO(QCD+EW)+\sim NNLO(QCD)$
WH	0.577 ± 0.016	0.703 ± 0.018	NNLO(QCD) + NLO(EW)
ZH	0.334 ± 0.013	0.414 ± 0.016	NNLO(QCD) + NLO(EW)
[ggZH]	0.023 ± 0.007	0.032 ± 0.010	$\mathrm{NLO}(\mathrm{QCD})$
bbH	0.156 ± 0.021	0.203 ± 0.028	5FS NNLO(QCD) + 4FS NLO(QCD)
ttH	0.086 ± 0.009	0.129 ± 0.014	NLO(QCD)
tH	0.012 ± 0.001	0.018 ± 0.001	$\mathrm{NLO}(\mathrm{QCD})$
Total	17.4 ± 1.6	22.3 ± 2.0	

Higgs production at LHC

Production modes

- gg fusion
- vector boson fusion
- associated production with W/Z boson, bb, tt

Increase by a factor of 2.3 from 8 to 13 TeV in gg fusion

• Even larger increase for ttH production

Higgs decays

Best mass resolution and good S/B

- $\quad H \to \gamma \gamma$
- $H \rightarrow ZZ^* \rightarrow 4 leptons$

M _н = 125 GeV					
Decay channel	Branching ratio [%]				
$H \rightarrow bb$	57.5 ± 1.9				
$H \to WW$	21.6 ± 0.9				
$H \to gg$	8.56 ± 0.86				
$H \to \tau \tau$	6.30 ± 0.36				
$H \to cc$	2.90 ± 0.35				
$H \rightarrow ZZ$	2.67 ± 0.11				
$H\to\gamma\gamma$	0.228 ± 0.011				
$H \to Z\gamma$	0.155 ± 0.014				
$H \to \mu \mu$	0.022 ± 0.001				

Higgs boson at LHC

New resonance with mass around 125 GeV announced by ATLAS & CMS experiments in July 2012 Phys. Lett. B 716(2012)

Measurements of its properties show good agreement with SM Higgs boson

Nobel prize for Physics 2013 to F. Englert, P. Higgs

Epiphany 2016

Mass of the Higgs boson (I.)

Phys. Rev. Lett. 114 (2015)

- Combination of ATLAS & CMS measurements
- Channels with best mass resolution used ($H \rightarrow \gamma\gamma$, $H \rightarrow 4$ leptons)
- Simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments
- Mass measurement as independent as possible on the SM assumptions
- Maximization of profile likelihood ratios

$$\Lambda(m_H) = \frac{L(m_H, \hat{\mu}_{ggF+tfH}^{\gamma\gamma}(m_H), \hat{\mu}_{VBF+VH}^{\gamma\gamma}(m_H), \hat{\mu}^{4\ell}(m_H), \hat{\theta}(m_H))}{L(\hat{m}_H, \hat{\mu}_{ggF+tfH}^{\gamma\gamma}, \hat{\mu}_{VBF+VH}^{\gamma\gamma}, \hat{\mu}^{4\ell}, \hat{\theta})}$$

 μ_{i}^{i} (signal strengths): ratio of experimental and SM expected signal yields

- two factors for $H \to \gamma \gamma$ (depending on the production mode) and one for $H \to \ 4 leptons$
- θ (nuisance parameters): systematic uncertainties

Mass of the Higgs boson (II.)

Phys. Rev. Lett. 114 (2015)

Result:

 $m_{H} = 125.09 \pm 0.21$ (stat) ± 0.11 (scale) ± 0.02 (other) ± 0.01 (theory) GeV

- Total uncertainty dominated by statistical error
- Systematic uncertainty dominated by energy/momentum scale and resolution

Measurements are consistent with each other

• Between the different decay channels and between the two experiments

Production and decay strength (I.)

ATLAS-CONF-2015-044 CMS-PAS-HIG-15-002

- Combination of ATLAS & CMS measurements
- Production and decay signal strength
 - $\mu_i \times \mu^f$ measured experimentally
- Five production processes (ggH, VBF, WH, ZH, ttH)
- Six decay channels $(H \rightarrow \gamma\gamma, H \rightarrow ZZ, H \rightarrow WW, H \rightarrow \tau\tau, H \rightarrow b-bbar, H \rightarrow \mu\mu)$
- Higgs boson mass fixed to 125.09 GeV

Channel	References for		Signal stre	Signal strength $[\mu]$ Signal significance		
	individual publications		from results in this paper (Section 5.2)			
	ATLAS	CMS	ATLAS	CMS	ATLAS	CMS
$H ightarrow \gamma \gamma$	[51]	[52]	$1.15^{+0.27}_{-0.25}$	$1.12^{+0.25}_{-0.23}$	5.0	5.6
- 200			$\binom{+0.26}{-0.24}$	$\binom{+0.24}{-0.22}$	(4.6)	(5.1)
$H \to Z Z \to 4\ell$	[53]	[54]	$1.51^{+0.39}_{-0.34}$	$1.05^{+0.32}_{-0.27}$	6.6	7.0
			$\binom{+0.33}{-0.27}$	$\binom{+0.31}{-0.26}$	(5.5)	(6.8)
$H \rightarrow WW$	[55, 56]	[57]	$1.23^{+0.23}_{-0.21}$	$0.91^{+0.24}_{-0.21}$	6.8	4.8
			$\binom{+0.21}{-0.20}$	$\binom{+0.23}{-0.20}$	(5.0)	(5.6)
H ightarrow au au	[58]	[59]	$1.41_{-0.35}^{+0.40}$	$0.89^{+0.31}_{-0.28}$	4.4	3.4
			$\binom{+0.37}{-0.33}$	$\binom{+0.31}{-0.29}$	(3.3)	(3.7)
$H \rightarrow bb$	[38]	[39]	$0.62^{+0.37}_{-0.36}$	$0.81^{+0.45}_{-0.42}$	1.7	2.0
			$\binom{+0.39}{-0.37}$	$\binom{+0.45}{-0.43}$	(2.7)	(2.5)
$H ightarrow \mu \mu$	[60]	[61]	-0.7 ± 3.6	0.8 ± 3.5		
			(±3.6)	(±3.5)		
ttH production	[28,62,63]	[65]	$1.9^{+0.8}_{-0.7}$	$2.9^{+1.0}_{-0.9}$	2.7	3.6
		10. 10.000	$\binom{+0.72}{-0.66}$	$\binom{+0.88}{-0.80}$	(1.6)	(1.3)

Production and decay strength (II.)

Data consistent with SM expectations

ATLAS-CONF-2015-044 CMS-PAS-HIG-15-002

- Combined signal yield relative to SM expectation 1.09±0.11
- Observed significance of the VBF production mode at the level of 5.4 σ (4.7 expected)
- $H \rightarrow \tau \tau$ channel at the level of 5.5 σ (5.0 expected)

Constraints on Higgs boson couplings

- Testing of the couplings by allowing more generic models (BSM)
- Example: Parameterizations allowing contributions from BSM particles in loops and in decays
 - Fitting of 7 coupling modifiers $\kappa_X + BR_{BSM}$

Data consistent with SM expectations

ATLAS-CONF-2015-044 CMS-PAS-HIG-15-002

Spin & parity measurements (I.)

- CMS measurements using the $H \rightarrow 4$ leptons, $H \rightarrow WW \rightarrow \ell \nu \ell \nu$, and $H \rightarrow \gamma \gamma$ decay modes
- Different variables sensitive to the spin and parity of the Higgs boson built
- Examples from $H \rightarrow 4$ leptons channel

Phys. Rev. D 92 (2015)

7-9th January

Spin & parity measurements (II.)

- Wide range of spin-two models excluded at 99% confidence level or higher
- Mixed-parity spin-one state is excluded at a confidence level of 99.999%
- All observations consistent with the expectations for a scalar SM-like Higgs boson (*J*^{PC}=0⁺⁺)

• Similar conclusions in ATLAS Eur. Phys. J. C75 (2015)

7-9th January

Phys. Rev. D 92 (2015)

Summary of Run1 measurements

 $\begin{array}{l} {\it H^0} & J=0 \\ \\ {\it Mass} \ m=125.09 \pm 0.24 \ {\rm GeV} \\ {\it H^0} \ {\it Signal Strengths in Different Channels} \\ \\ {\it See Listings for the latest unpublished results.} \\ {\it Combined Final States} = 1.17 \pm 0.17 \quad (S=1.2) \\ {\it WW^*} = 0.81 \pm 0.16 \\ {\it ZZ^*} = 1.15^{+0.27}_{-0.23} \quad (S=1.2) \\ {\it \gamma\gamma} = 1.17^{+0.19}_{-0.17} \\ {\it b\overline{b}} = 0.85 \pm 0.29 \\ {\it \mu^+\mu^-} < 7.0, \ {\rm CL} = 95\% \\ {\it \tau^+\tau^-} = 0.79 \pm 0.26 \\ {\it Z\gamma} < 9.5, \ {\rm CL} = 95\% \\ {\it t\overline{t}H^0} \ {\rm Production} = 2.5^{+0.9}_{-0.8} \\ \end{array}$

All results in agreement with the SM expectations

Analysis with current Run2 dataset

- Limited statistics compared to Run1 so far
- CMS
 - Preparation stage for the analysis with more data
 - Trigger, ID, selection efficiencies
 - Control regions checks
 - All Higgs boson analysis blinded at the moment
- ATLAS
 - Cross-section measurements with discovery channels ($H \rightarrow \gamma \gamma$, $H \rightarrow 4$ leptons)
 - Preparation stage for the rest of the analysis

$H \rightarrow \gamma \gamma$: Performance studies at CMS

• Search for a pair of well identified photons

Epiphany 2016

Cross-section measurement

$$\sigma = \frac{N_s}{ACL_i}$$

 σ - cross-section

- N_{s} extracted signal yield
- C correction factor
- A acceptance factor
- L_i- integrated luminosity

- Correction factor (*C*)
 - Accounts for detector resolution and efficiency
- Acceptance factor (A)
 - Efficiency of selection cuts at truth level

$H \rightarrow \gamma \gamma$ analysis at ATLAS (I.)

ATLAS-CONF-2015-060

- Event selection
 - Two tight identified & isolated photons
 - Relative transverse energy cut (E_T/m_{yy} >0.35 / 0.25)

 Signal selection efficiency between 31 and 37% depending on the production mode

$H \rightarrow \gamma \gamma$ analysis at ATLAS (II.)

Events / GeV

- Main backgrounds
 - yy continuum
 - γ+jet, jet+jet production

$$N_{exp} = 143 \pm 71 \text{ (stat.)} \pm \frac{^{39}}{_{6}} \text{ (syst.)}$$

 $N_{_{S}} = 113 \pm 74 \text{ (stat.)} \pm \frac{^{43}}{_{25}} \text{ (syst.)}$

$H \rightarrow \gamma \gamma$ cross-section (I.)

• Correction factor

 Defined as ratio of the expected number of events passing the selection requirement with the number of generated particle-level events in the fiducial volume

-C = 0.68

Event Selection					
Two highest- $p_{\rm T}$ photons:	$ \eta^{\gamma} < 2.37$				
Relative- p_{T} :	$E_{T,1}^{\gamma}/m_{\gamma\gamma} \ge 0.35, E_{T,2}^{\gamma}/m_{\gamma\gamma} \ge 0.25$				
Mass window:	$105 \mathrm{GeV} \le m_{\gamma\gamma} < 160 \mathrm{GeV}$				
Photon isolation:	$E_{\rm T,iso} < 0.1 \times E_{\rm T}^{\gamma} + 1 {\rm GeV}$				

Component	Uncertainty [%]
Photon energy scale	< 0.1
Photon energy resolution	< 0.1
Photon identification efficiency	± 2.6
Photon isolation efficiency	± 4.0
Trigger efficiency	± 0.4
Vertex selection	< 0.1
Theoretical modeling uncertainty	± 0.8
Total	± 4.8

$H \rightarrow \gamma \gamma$ cross-section (II.)

- Acceptance factor
 - Fraction of $H \to \gamma \gamma\,$ decays that pass the fiducial selection

$$\begin{array}{c|ccc} \sqrt{s} & \mathcal{A} \\ \hline 7 \, \mathrm{TeV} & 0.620 \pm 0.007 \\ 8 \, \mathrm{TeV} & 0.611 \pm 0.012 \\ 13 \, \mathrm{TeV} & 0.570 \pm 0.006 \end{array}$$

• Cross-section results

\sqrt{s}	Measured total cross section [pb]	LHC-XS prediction [pb]
$7{ m TeV}$	$35 \pm 12 \text{ (stat.)} \pm 4 \text{ (syst.)} \pm 1 \text{ (lumi.)}$	17.5 ± 1.6
$8{ m TeV}$	$30.5 \pm 7.1 \text{ (stat.)} ^{+2.6}_{-2.5} \text{ (syst.)} \pm 0.9 \text{ (lumi.)}$	22.3 ± 2.0
$13{ m TeV}$	$40 \pm 26 \text{ (stat.)} ^{+16}_{-10} \text{ (syst.)} \pm 2 \text{ (lumi.)}$	$50.9 \ ^{+4.5}_{-4.4}$

$H \rightarrow 4$ leptons at CMS

- Measurement of the fiducial cross section of the dominant background (ZZ* continuum)
- Blinded analysis at the moment
 - Mass spectrum matches well the expectations in the side band regions

$H \rightarrow 4$ leptons analysis at ATLAS (I.)

ATLAS-CONF-2015-059

Event with 4 identified & isolated leptons and 2 jets

$H \rightarrow 4$ leptons analysis at ATLAS (II.)

- Main backgrounds
 - ZZ* non-resonant diboson production
 - Z+jets, t-tbar

Signal	Signal	ZZ^*	$Z + jets, t\bar{t}$	S/B	Expected	Observed
full mass range			$t\bar{t}V,VVV,WZ$			
1.79 ± 0.21	1.67 ± 0.20	0.64 ± 0.06	0.08 ± 0.03	2.3	2.39 ± 0.21	1
1.19 ± 0.14	1.06 ± 0.13	0.44 ± 0.04	0.07 ± 0.03	2.1	1.57 ± 0.14	1
1.07 ± 0.16	0.96 ± 0.15	0.34 ± 0.05	0.09 ± 0.02	2.2	1.40 ± 0.16	2
1.01 ± 0.15	0.88 ± 0.13	0.32 ± 0.05	0.09 ± 0.02	2.1	1.30 ± 0.14	0
5.06 ± 0.60	4.57 ± 0.54	1.74 ± 0.19	0.34 ± 0.06	2.2	6.65 ± 0.58	4
	Signal full mass range 1.79 ± 0.21 1.19 ± 0.14 1.07 ± 0.16 1.01 ± 0.15 5.06 ± 0.60	SignalSignalfull mass range 1.79 ± 0.21 1.67 ± 0.20 1.19 ± 0.14 1.06 ± 0.13 1.07 ± 0.16 0.96 ± 0.15 1.01 ± 0.15 0.88 ± 0.13 5.06 ± 0.60 4.57 ± 0.54	SignalSignal ZZ^* full mass range 1.79 ± 0.21 1.67 ± 0.20 0.64 ± 0.06 1.19 ± 0.14 1.06 ± 0.13 0.44 ± 0.04 1.07 ± 0.16 0.96 ± 0.15 0.34 ± 0.05 1.01 ± 0.15 0.88 ± 0.13 0.32 ± 0.05 5.06 ± 0.60 4.57 ± 0.54 1.74 ± 0.19	SignalSignal ZZ^* $Z + jets, t\bar{t}$ full mass range $t\bar{t}V, VVV, WZ$ 1.79 ± 0.21 1.67 ± 0.20 0.64 ± 0.06 0.08 ± 0.03 1.19 ± 0.14 1.06 ± 0.13 0.44 ± 0.04 0.07 ± 0.03 1.07 ± 0.16 0.96 ± 0.15 0.34 ± 0.05 0.09 ± 0.02 1.01 ± 0.15 0.88 ± 0.13 0.32 ± 0.05 0.09 ± 0.02 5.06 ± 0.60 4.57 ± 0.54 1.74 ± 0.19 0.34 ± 0.06	SignalSignal ZZ^* $Z + jets, t\bar{t}$ S/B full mass range $t\bar{t}V, VVV, WZ$ $t\bar{t}V, VVV, WZ$ 1.79 ± 0.21 1.67 ± 0.20 0.64 ± 0.06 0.08 ± 0.03 2.3 1.19 ± 0.14 1.06 ± 0.13 0.44 ± 0.04 0.07 ± 0.03 2.1 1.07 ± 0.16 0.96 ± 0.15 0.34 ± 0.05 0.09 ± 0.02 2.2 1.01 ± 0.15 0.88 ± 0.13 0.32 ± 0.05 0.09 ± 0.02 2.1 5.06 ± 0.60 4.57 ± 0.54 1.74 ± 0.19 0.34 ± 0.06 2.2	SignalSignal ZZ^* $Z + jets, t\bar{t}$ S/B Expectedfull mass range $t\bar{t}V, VVV, WZ$ $t\bar{t}V, VVV, WZ$ $Z.3$ 2.39 ± 0.21 1.79 ± 0.21 1.67 ± 0.20 0.64 ± 0.06 0.08 ± 0.03 2.3 2.39 ± 0.21 1.19 ± 0.14 1.06 ± 0.13 0.44 ± 0.04 0.07 ± 0.03 2.1 1.57 ± 0.14 1.07 ± 0.16 0.96 ± 0.15 0.34 ± 0.05 0.09 ± 0.02 2.2 1.40 ± 0.16 1.01 ± 0.15 0.88 ± 0.13 0.32 ± 0.05 0.09 ± 0.02 $2.1 \pm 1.30 \pm 0.14$ 5.06 ± 0.60 4.57 ± 0.54 1.74 ± 0.19 0.34 ± 0.06 2.2 6.65 ± 0.58

$H \rightarrow 4$ leptons cross-section

Acceptance & correction factor

		\sqrt{s} [TeV]	
	7	8	13
$\mathcal{A}~[\%]$	46.67 ± 0.23	45.98 ± 0.14	42.74 ± 0.24
\mathcal{C} [%]	51.89 ± 0.36	55.32 ± 0.24	52.71 ± 0.45

Cross-section results

Data set [TeV]	$N_{ m s}$	$\sigma_{4\ell}^{\mathrm{fid}}~\mathrm{[fb]}$	$\sigma_{ m theory}^{ m fid}$ [fb]	$\sigma^{\rm tot} \; [{\rm pb}]$	$\sigma_{\rm theory}^{\rm tot}$ [pb]
7	$4.5 \ ^{+2.8}_{-2.2}$	$1.9 \ ^{+1.2}_{-0.9}$	1.03 ± 0.11	$33 \ ^{+21}_{-16}$	17.5 ± 1.6
8	$24.0 \ ^{+6.0}_{-5.3}$	2.1 ± 0.5	1.29 ± 0.13	$37 \ ^{+9}_{-8}$	22.3 ± 2.0
13	$1.0 \ ^{+2.3}_{-1.5}$	$0.6 \ ^{+1.3}_{-0.9}$	2.74 ± 0.28	$12 \ ^{+25}_{-16}$	$50.9 \ ^{+4.5}_{-4.4}$

Cross-section combination

ATLAS-CONF-2015-069

- Combination of $H \rightarrow \gamma \gamma$ and $H \rightarrow 4$ leptons cross-section measurements
- Comparison of 7, 8 and 13 TeV results

Conclusions

- Run1 measurements consistent with the SM expectations
 - First combined measurements by ATLAS and CMS for mass and couplings
- First Higgs boson measurements in Run2 performed with the ATLAS detector
 - Channels $H \rightarrow \gamma \gamma$ and $H \rightarrow 4$ leptons
- Preparation of the analysis for larger dataset in ATLAS and CMS experiments
- Much more to come with more data
 - Different channels
 - CP, production & decay rates, differencial cross-section
 - Rare decays