The D-meson nuclear modification factor as measured with ALICE

Annelies Veen, on behalf of the ALICE Collaboration

Nikhef

January 9, 2016, EPIPHANY, Cracow

Annelies Veen, on behalf of the ALICE Collaboration

The D-meson nuclear modification factor as measured with ALICE

э

The importance of measuring heavy-flavour particles.

- Charm and Beauty quarks are primarily produced in hard scattering processes in the early stage of collisions.
- Traverse the Quark-Gluon Plasma created in heavy-ion collisions and lose energy via radiative gluon emission and elastic collisions.
- Heavy quarks are expected to lose less energy than light quarks and gluons due to the colorcharge and dead cone effects.

- The color charge dependence leads to the expectation that $E_{\text{loss}}(\text{gluons}) > E_{\text{loss}}(\text{quarks})$ (casimir factor).
- The dead-cone effect leads to the expectation of a mass-dependent radiation suppression (θ < m_Q/E_Q).

Expectation: $E_{loss}(g) > E_{loss}(light quarks) > E_{loss}(c) > E_{loss}(b)$

Phys. Rev. D71 (2005) 054027 & Y. Dokshitzer & D. Kharzeev PLB 519(2001)199

Annelies Veen, on behalf of the ALICE Collaboration

Annelies Veen, on behalf of the ALICE Collaboration

Centrality

In Pb-Pb collisions centrality is defined by the impact parameter b, in which we differentiate between central (small b) and more peripheral (larger b) events.

- The notion of centrality is used such that 0-10% centrality implies the 10% most central events.
- Experimentally one can also discuss the average number of nucleons participating (N_{part}) in a collision, or the number of hard-nuclear collisions (N_{coll}), which can be calculated via a Glauber fit.

D-meson production

- The reconstruction is done for the following hadronic decays at mid-rapidity:
 - $D^0 \rightarrow K^- \pi^+$ (Branching ratio: 3.88 \pm 0.05%)
 - $D^+ \rightarrow K^- \pi^+ \pi^+$ (Branching ratio: 9.13 ± 0.19%)
 - $D^{*+} \rightarrow D^0 \pi^+$ (Branching ratio: 67.7 \pm 0.5%)

And the respective charge conjugates.

- Analysis based on decay vertex topologies displaced from the primary vertex and PID of the decay products.
- Signal extraction via an invariant mass analysis.

K.A. Olive et al (Particle Data Group), The review of particle physics, Chin. Phys. C 38 (2014) 090001.

• • • • • • • • • • • • •

 $S(3\sigma) = 825 \pm 56$ $S/B(3\sigma) = 0.4$

1.95

M(Kπ) (GeV/c²

M(Kππ) (GeV/c2)

1.8 1.85

6<p <8 GeV/c

 $S(3\sigma) = 361 \pm 67$

1.85 .9 1.95

 $S(3\sigma) = 307 \pm 49$

 $M(K\pi\pi)-M(K\pi)$ (GeV/ c^2)

 $S/B(3\sigma) = 0.2$

 $S/B(3\sigma) = 0.1$

6<p_<8 GeV/c

6)/5 600

200

Entries/(0.5 MeV/

24<p <36 GeV/c

1 75 18 1.85 1.9 1.95

24<p_<36 GeV/c

Entries/(2 MeV/c

 $S/B(3\sigma) = 0.4$

-M(Kπ) (GeV/c² $24 < p_{\rm T} < 36 \, {\rm GeV}/c$

 $S(3\sigma) = 65 \pm 16$

M(Kππ) (GeV/c2)

 $S(3\sigma) = 24 \pm 7$ $S/B(3\sigma) = 1.2$

M(Kππ)-M(Kπ) (GeV/c2

 $S/B(3\sigma) = 0.4$

Nikhef

Universiteit Utrecht

2<p <3 GeV/c

 $S/B(3\sigma) = 0.09$ 18 1.85

3<p_<4 GeV/c $S(3\sigma) = 408 \pm 75$

 $S/B(3\sigma) = 0.07$

S (3o) = 4301 ± 247

 $3 < p_{\rm T} < 4 \, {\rm GeV}/c$

→ K^{*}π^{*}π^{*} and charge conj

1.7 1.75 1.8 1.85 1.9 1.95 2

 $\rightarrow D^0 \pi^+$ and charge con

3<p <4 GeV/c $S(3\sigma) = 317 \pm 96$

 $S/B(3\sigma) = 0.06$

_M(Kππ)-M(Kπ) (GeV/c²)

M(Km) (GeV/c²)

M(Kππ) (GeV/c2)

6000

Entries/(7 MeV/c²)

ss/(0.5 Me

L 500

ALI-PUB

Inv. Mass distr. for $\sqrt{s_{\rm NN}} = 2.76$ TeV Pb-Pb collisions $2 < p_{\rm TT} < 3 \, {\rm GeV}/c$ $6 < p_{\rm T} < 8 \, {\rm GeV}/c$ $16 < p_{\rm T} < 24 ~{\rm GeV}/c$ The invariant mass distribution in \$500 6<p_<8 GeV/c</p> Entries/(10 MeV/c² 0-10% Pb-Pb, Vs_{NN} = 2.76 TeV 16<p_<24 GeV/c ALICE the 0-10% centrality class in $a_{000} \vdash D^0 \rightarrow K^* \pi^*$ and charge coni. è $S(3\sigma) = 121 \pm 22$

three $p_{\rm T}$ bins for

 (K, π) (D⁰),

and mass difference:

$$\Delta M = M(\mathsf{K}\pi\pi) - M(\mathsf{K}\pi) \ (\mathrm{D}^{*+})$$

[1] [ALICE Collaboration]. JHEP 01 (2012) 128

Annelies Veen, on behalf of the ALICE Collaboration

Nuclear Modification Factor (R_{AA})

 Comparison of the particle yields in Pb-Pb collisions and binary-scaled pp collisions (R_{AA}).

$$R_{\rm AA} = \frac{1}{\langle T_{\rm AA} \rangle} \cdot \frac{\mathrm{d}N_{\rm AA}/\mathrm{d}\boldsymbol{p}_{\rm T}}{\mathrm{d}\sigma_{\rm pp}/\mathrm{d}\boldsymbol{p}_{\rm T}},\tag{1}$$

 $\langle {\it T}_{\rm AA} \rangle$ is the average nuclear overlap function (Glauber model).

- ► Thus if no nuclear effects are present $R_{AA} = 1$ (expected for high p_T).
- Similarly for the p-Pb collisions we define:

$$R_{\rm pPb} = \frac{1}{A} \cdot \frac{\mathrm{d}\sigma_{\rm pPb}/\mathrm{d}\boldsymbol{p}_{\rm T}}{\mathrm{d}\sigma_{\rm pp}/\mathrm{d}\boldsymbol{p}_{\rm T}},\tag{2}$$

・ロト ・日本・ ・ ヨト

Annelies Veen, on behalf of the ALICE Collaboration

The D-meson nuclear modification factor as measured with ALICE

э

- ▶ D⁰, D⁺ and D^{*+} results are compatible within uncertainties, so averages can be used.
- Large suppression of D mesons at 4 < p_T < 24 GeV/c.
- ▶ R_{pPb} is consistent with unity while the R_{AA} is significantly below 1 for p_T > 3 GeV/c: → Suppression of the D-meson yield in Pb-Pb collisions is due to in-medium effects.

[2] [ALICE Collaboration], arXiv:1509.06888 [nucl-ex],	《曰》 《卽》 《言》 《言》	€.	500
Annelies Veen, on behalf of the ALICE Collaboration			
The D-meson nuclear modification factor as measured with ALICE			8

Comparison with model calculations

Interaction of heavy quarks with medium computed considering:

- Only Coll. E_{loss}: POWLANG and TAMU, BAMPS (scaling in regime where rad. is dominant) (I)
- Rad. and Coll. E_{loss}: Djordevic, WHDG, CUJET3.0, MC@sHQ+EPOS, BAMPS(II), Cao Qin Bass.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∃ >

Vitev has only Rad. E_{loss} (I) and for II it includes in-medium dissociation heavy-flavour hadrons.

Comparison to several models gives a good agreement with the data.

[2] [ALICE Collaboration], arXiv:1509.06888 [nucl-ex],

Conclusion

- ► The nuclear modification factor for D mesons shows a p_T and centrality-dependent suppression of the D-meson yield, up to a factor of 5-6 for central events with 8 < p_T < 12 GeV/c.</p>
- The measured R_{pPb} is consistent with unity which indicates that the suppression of the D-meson yield in Pb–Pb collisions is due to in-medium effects.
- Comparison to models gives good agreement for several models, both for models that do and do not include a hydrodynamical medium expansion. Stronger constraints on the models can be found when combining R_{AA} and elliptic flow measurements.

Future prospects for D mesons

- Run I: the D⁰ is under study at very-low p_T (< 1 GeV/c) in pp and p-Pb collisions. (Improvement of total open-charm cross section)
- Run II has an increased luminosity and centre of mass energy.
- ▶ First look at Run II data in pp collisions at $\sqrt{s} = 13$ TeV: already high statistical significance for D mesons for $p_{\rm T} > 2$ GeV/c in first 48M events.

▶ Pb-Pb run at $\sqrt{s_{\rm NN}} = 5.02$ TeV has finished just before Christmas.

• • • • • • • • • • • • •

Annelies Veen, on behalf of the ALICE Collaboration

Motivation	Detector explanation	D-meson reconstruction	Results	Conclusion & Outlook

Questions?

Thank you for listening!

▲ロ ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ▲ ● ◆ ○ ○ ○

Annelies Veen, on behalf of the ALICE Collaboration

Motivation	Detector explanation	D-meson reconstruction	Results	Conclusion & Outlook

Backup

◆□ > ◆□ > ◆臣 > ◆臣 > □ = −の < ⊙

Annelies Veen, on behalf of the ALICE Collaboration

Explicit gluon radiation casimir

Casimir effect: $\langle \Delta E \rangle \propto \alpha_s C_R \hat{q} L^2$

- α_s QCD coupling constant
- C_R Casimir coupling factor 4/3 for quarks and 3 for gluon.
- ▶ *q̂* transport coefficient dependent on the medium (average *p*_T kick per unit path length of probe (prop to gluon density))
- L length traversed in medium

э

Done with pQCD based energy scaling (FONLL), checked with available $\sqrt{s} = 2.76 TeV$ measurements:

Annelies Veen, on behalf of the ALICE Collaboration

Universiteit Utrecht

Conclusion & Outlook Nikhef

Comparison to STAR and $R_{\rm pPb}$ models

- For a $p_{\rm T} > 2 {\rm ~GeV}/c$ the D-meson results are compatible with the ${\rm D}^0{\rm R}_{\rm AA}$ at lower energies.
- Within the current uncertainties all the models that include initial-state effects describe the data well.

[5] ALICE Collaboration. Phys. Rev. Lett. 113 (2014), 232301.

Comparison with model calculations, more peripheral

Description of the medium

No medium, Glauber model nuclear overlap: Djordevic, WHDG and Vitev.

 Hydrodynamical medium expansion: CUJET3.0, MC@sHQ+EPOS, BAMPS, Cao Qin Bass, POWLANG and TAMU.

Image: Image:

Efficiency and Feeddown

- The results are corrected for the acceptance of our detector (including rapidity interval) and for the efficiency of the chosen cuts on the data.
- Relative systematic uncertainties on the prompt D-meson production yields in Pb-Pb collisions for selected pT intervals.

The D-meson nuclear modification factor as measured with ALICE

э

Nikhef