Measurement of the ZZ production cross section in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

> Stefan Richter (University College London, CERN) on behalf of the ATLAS Collaboration

XXII Epiphany Conference · Cracow, Poland · 7-9 January 2016

[±]UCL

Measure fiducial inclusive cross section for ZZ at $\sqrt{s} = 13$ TeV in the four-lepton channel, using 3.2 fb⁻¹ of data

 $\ell = e, \mu$

Also extrapolate to 'total' phase space and all Z boson decays

Leptonically decaying Z is not strictly separable from $\gamma^* \rightarrow "Z" \equiv Z/\gamma^*$ with mass between 66–116 GeV

(CMS uses 60-120 GeV)

Paper: [1512.05314] (submitted to PRL)

ZZ production at the LHC

Predicted four-lepton mass spectrum at 8 TeV [1509.07844]:

Standard Model test at 13 TeV

Appears in Higgs and new-physics analysis background and/or sidebands

Limits on anomalous gauge couplings:

red blob vertex forbidden in SM

Towards vector boson scattering:

Advantage: extremely clean tiny background excellent Z mass resolution Disadvantage: small cross section $0.45\% \times 15.6 \text{ pb}$ (NNLO) $\approx 70 \text{ fb}$

UC

Generator-level

Prompt final-state muons and electrons

'D ressing' to account for Bremsstrahlung: add four-momenta of prompt photons within $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.1$

- $p_{\perp} > 20 \text{ GeV}$
- $|\eta| < 2.7$

Reconstructed

Lepton identification

Electrons: electromagnetic calorimeter deposits + tracking info Muons: tracking and/or muon spectrometer info, calorimeter signature consistent with muon

 $p_\perp > 20 \; {\rm GeV}$

 $|\eta| < 2.47$ (electrons) or 2.7 (muons)

Associated with primary vertex

Transverse impact parameter significance $|d_0 / \sigma(d_0)| < 3$ Longitudinal impact parameter $|z_0 \sin \theta| < 0.5 \text{ mm} (z_0 \text{ w.r.t. primary vertex})$

Isolated from other tracks/energy deposits

Event selection

Same for fiducial and reconstructed

except for some reconstruction quality requirements

- Exactly 4 leptons in 2 same-flavour, opposite-charge pairs $\Delta R_{\ell\ell} > 0.2$
- If 4 same-flavour leptons, form pairs such that $|m_{12} m_Z| + |m_{34} m_Z|$ is minimised
- Z candidate selection: 66 GeV $< m_{12}, m_{34} < 116$ GeV

In reconstructed: single-muon or dielectron trigger matched by selected leptons, hard-scattering vertex, and at most 1 muon without inner-detector or muon-system track (*standalone*, *calorimeter-tagged*)

Four genuine prompt leptons

 $ZZ \rightarrow [4\tau, 2\tau 2\ell] \rightarrow 4\ell$ + neutrinos ZZZ, WZZ, WWZ ttZ - from simulation

1-2 nonprompt or misidentified leptons

```
\{Z, WZ, WW\} + jets
tī
```

. . .

data-driven estimate

L

Background process	Expected events
$ZZ \rightarrow 2\ell 2\tau, 4\tau$	0.07 ± 0.02
ZZZ, WZZ, WWZ	0.17 ± 0.05
tīZ	0.30 ± 0.09
1–2 misidentified leptons*	$0.09^{+1.08}_{-0.04}$
Total	$0.62^{+1.08}_{-0.11}$

* Derived using data-driven method

Channel	4e	2e2µ	4μ	Total 4ℓ
Observed Expected background	$\begin{array}{c} 15\\ 0.20\pm0.05 \end{array}$	$30 \\ 0.25^{+0.40}_{-0.05}$	$18\\0.17^{+1.00}_{-0.04}$	$63 \\ 0.62^{+1.08}_{-0.11}$

Correction factor C_{ZZ}

Corrects measured cross section for detector effects $C_{ZZ} \equiv \frac{\text{selected reconstructed events}}{\text{fiducial events}}$

Determined using simulated signal samples

	4e	2e2µ	4μ
C_{ZZ}	0.55 ± 0.02	0.63 ± 0.02	0.81 ± 0.03

Relative uncertainties in %:

Source	4e	2e2µ	4μ
Statistical	0.7	0.5	0.5
Theoretical	2.5	2.5	2.5
Experimental efficiencies	2.3	2.2	2.0
Momentum scales and resolutions	0.4	0.2	0.1
Total	3.5	3.3	3.2

Extrapolation factor A_{ZZ}

Extrapolates fiducial cross section to total phase space

$$A_{\rm ZZ} \equiv \frac{\text{fiducial events}}{\text{on-shell events}} \approx 0.39 \pm 0.2$$

Determined using simulated signal samples

Relative uncertainties in %:

Source	Uncertainty
Statistical	0.9
Generator	3.4
Parton shower	0.8
PDFs	0.8
QCD scales	0.3
Total	3.7

Maximum-likelihood fits:

Fiducial per-channel cross sections Fiducial combined cross section

Total combined cross section

Signal and background yields treated as Poisson variables Systematic uncertainties treated as Gaussian nuissance parameters

Î U C L

Signal kinematics

Dilepton masses (before on-shell requirement)

Four-lepton mass

Four-lepton p_{\perp}

Four-lepton rapidity

Results

	Measurement	NNLO prediction
$\sigma^{\rm fid}_{\rm ZZ \rightarrow e^+e^-e^+e^-}$	8.4 $^{+2.4}_{-2.0}$ (stat.) $^{+0.4}_{-0.2}$ (syst.) $^{+0.5}_{-0.3}$ (lumi.) fb	$6.9^{+0.2}_{-0.2}$ fb
$\sigma^{\rm fid}_{\rm ZZ ightarrow e^+ e^- \mu^+ \mu^-}$	14.7 $^{+2.9}_{-2.5}({\rm stat.})$ $^{+0.6}_{-0.4}({\rm syst.})$ $^{+0.9}_{-0.6}({\rm lumi.})$ fb	$13.6^{+0.4}_{-0.4}~{\rm fb}$
$\sigma^{\rm fid}_{{\rm ZZ} ightarrow\mu^+\mu^-\mu^+\mu^-}$	6.8 $^{+1.8}_{-1.5}$ (stat.) $^{+0.3}_{-0.3}$ (syst.) $^{+0.4}_{-0.3}$ (lumi.) fb	$6.9^{+0.2}_{-0.2}$ fb
$\sigma^{\rm fid}_{\rm ZZ \rightarrow \ell^+ \ell^- \ell'^+ \ell'^-}$	29.7 $^{+3.9}_{-3.6}$ (stat.) $^{+1.0}_{-0.8}$ (syst.) $^{+1.7}_{-1.3}$ (lumi.) fb	$27.4^{+0.9}_{-0.8}~{ m fb}$
$\sigma_{ m ZZ}^{ m tot}$	16.7 $^{+2.2}_{-2.0}({\rm stat.}) ^{+0.9}_{-0.7}({\rm syst.}) ^{+1.0}_{-0.7}({\rm lumi.}) {\rm pb}$	$15.6^{+0.4}_{-0.4} \text{ pb}$

Theory prediction: [1507.06257]

Fiducial cross-section predictions include fiducial acceptance correction for final-state photon radiation (lowers by $\sim 4\%$)

Theory comparison (fiducial)

Total cross section vs. \sqrt{s}

Conclusions

. . .

ZZ production cross section measured at $\sqrt{s} = 13$ TeV

Total uncertainty ca. 15%, statistically dominated

Agreement with NNLO Standard Model prediction

Starting to be sensitive to gg-initiated loop-induced production!

Future goals with more data:

differential cross sections limits on anomalous gauge couplings

Thank you! Questions?

Backup

Candidate event (dilepton masses 95 and 88 GeV) **UCL**

Run Number: 284285, Event Number: 4210157909

Date: 2015-11-01 14:56:38 CET

- Double parton scattering (~1%) included in measurement but not in prediction
- NLO corrections to loop-induced process could increase prediction by ${\sim}4{-}5\%$ [1509.06734]
- NLO- α electroweak corrections could *decrease* prediction by \sim 7–8% [1305.5402], [Biedermann, Denner, Dittmaier, Hofer, Jäger; to be submitted]

UCL

Powheg + Pythia 8: ZZ + 0 jets @ NLO Sherpa: ZZ + 0-1 jets @ NLO + 2-3 jets @ LO Sherpa: gg \rightarrow ZZ + 0-1 jets @ LO

Stefan Richter for ATLAS: ZZ @ 13 TeV

[≜]UCL